Engineering large-scale hiPSC-derived vessel-integrated muscle-like lattices for enhanced volumetric muscle regeneration.

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Myung Chul Lee, Yasamin A Jodat, Yori Endo, Alejandra Rodríguez-delaRosa, Ting Zhang, Mehran Karvar, Ziad Al Tanoury, Jacob Quint, Tom Kamperman, Kiavash Kiaee, Sofia Lara Ochoa, Kun Shi, Yike Huang, Montserrat Pineda Rosales, Adnan Arnaout, Hyeseon Lee, Jiseong Kim, Eder Luna Ceron, Isaac Garcia Reyes, Adriana C Panayi, Angel Flores Huidobro Martinez, Xichi Wang, Ki-Tae Kim, Jae-I Moon, Seung Gwa Park, Kangju Lee, Michelle A Calabrese, Shabir Hassan, Junmin Lee, Ali Tamayol, Luke Lee, Olivier Pourquié, Woo-Jin Kim, Indranil Sinha, Su Ryon Shin
{"title":"Engineering large-scale hiPSC-derived vessel-integrated muscle-like lattices for enhanced volumetric muscle regeneration.","authors":"Myung Chul Lee, Yasamin A Jodat, Yori Endo, Alejandra Rodríguez-delaRosa, Ting Zhang, Mehran Karvar, Ziad Al Tanoury, Jacob Quint, Tom Kamperman, Kiavash Kiaee, Sofia Lara Ochoa, Kun Shi, Yike Huang, Montserrat Pineda Rosales, Adnan Arnaout, Hyeseon Lee, Jiseong Kim, Eder Luna Ceron, Isaac Garcia Reyes, Adriana C Panayi, Angel Flores Huidobro Martinez, Xichi Wang, Ki-Tae Kim, Jae-I Moon, Seung Gwa Park, Kangju Lee, Michelle A Calabrese, Shabir Hassan, Junmin Lee, Ali Tamayol, Luke Lee, Olivier Pourquié, Woo-Jin Kim, Indranil Sinha, Su Ryon Shin","doi":"10.1016/j.tibtech.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Engineering biomimetic tissue implants with human induced pluripotent stem cells (hiPSCs) holds promise for repairing volumetric tissue loss. However, these implants face challenges in regenerative capability, survival, and geometric scalability at large-scale injury sites. Here, we present scalable vessel-integrated muscle-like lattices (VMLs), containing dense and aligned hiPSC-derived myofibers alongside passively perfusable vessel-like microchannels inside an endomysium-like supporting matrix using an embedded multimaterial bioprinting technology. The contractile and millimeter-long myofibers are created in mechanically tailored and nanofibrous extracellular matrix-based hydrogels. Incorporating vessel-like lattice enhances myofiber maturation in vitro and guides host vessel invasion in vivo, improving implant integration. Consequently, we demonstrate successful de novo muscle formation and muscle function restoration through a combinatorial effect between improved graft-host integration and its increased release of paracrine factors within volumetric muscle loss injury models. The proposed modular bioprinting technology enables scaling up to centimeter-sized prevascularized hiPSC-derived muscle tissues with custom geometries for next-generation muscle regenerative therapies.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.08.001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering biomimetic tissue implants with human induced pluripotent stem cells (hiPSCs) holds promise for repairing volumetric tissue loss. However, these implants face challenges in regenerative capability, survival, and geometric scalability at large-scale injury sites. Here, we present scalable vessel-integrated muscle-like lattices (VMLs), containing dense and aligned hiPSC-derived myofibers alongside passively perfusable vessel-like microchannels inside an endomysium-like supporting matrix using an embedded multimaterial bioprinting technology. The contractile and millimeter-long myofibers are created in mechanically tailored and nanofibrous extracellular matrix-based hydrogels. Incorporating vessel-like lattice enhances myofiber maturation in vitro and guides host vessel invasion in vivo, improving implant integration. Consequently, we demonstrate successful de novo muscle formation and muscle function restoration through a combinatorial effect between improved graft-host integration and its increased release of paracrine factors within volumetric muscle loss injury models. The proposed modular bioprinting technology enables scaling up to centimeter-sized prevascularized hiPSC-derived muscle tissues with custom geometries for next-generation muscle regenerative therapies.

设计大规模的 hiPSC 衍生血管整合肌肉样晶格,以增强肌肉再生的体积。
利用人体诱导多能干细胞(hiPSCs)设计生物仿生组织植入体有望修复体积组织损失。然而,这些植入物在大规模损伤部位的再生能力、存活率和几何可扩展性方面面临挑战。在这里,我们利用嵌入式多材料生物打印技术,在类似内膜的支撑基质内,在可被动灌注的血管状微通道旁,展示了可扩展的血管集成肌肉样晶格(VMLs),其中包含致密且排列整齐的 hiPSC 衍生肌纤维。这种具有收缩能力的毫米长肌纤维是在基于细胞外基质的机械定制纳米纤维水凝胶中生成的。血管样晶格的加入增强了肌纤维在体外的成熟度,并引导宿主血管在体内侵入,提高了植入物的整合度。因此,在体积性肌肉缺失损伤模型中,通过改善移植物与宿主的整合及其增加旁分泌因子的释放之间的组合效应,我们成功地展示了新生肌肉的形成和肌肉功能的恢复。所提出的模块化生物打印技术可将定制几何形状的前血管化 hiPSC 衍生肌肉组织扩大到厘米大小,用于下一代肌肉再生疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信