Leila Mirzaeian , Khadijeh Bahrehbar , Mandana Emamdoust , Masoumeh Amiri , Maryam Azari , Mohammad Taghi Ghorbanian
{"title":"Investigating the influence of estrous cycle-dependent hormonal changes on neurogenesis in adult mice","authors":"Leila Mirzaeian , Khadijeh Bahrehbar , Mandana Emamdoust , Masoumeh Amiri , Maryam Azari , Mohammad Taghi Ghorbanian","doi":"10.1016/j.steroids.2024.109513","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) in the adult brain. Sex hormones play an essential role in the development of the brain. The aim of this study was to evaluate the neurogenic changes in the brain at different phases of the estrous cycle in adult mice.</div></div><div><h3>Materials and methods</h3><div>Female NMRI mice were divided into four groups: 1- Estrous, 2- Proestrous, 3- Metestrous, and 4- Diestrous. Different stages of the estrous cycle were determined by staining of vaginal smears. The level of estrogen, progesterone, prolactin, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) hormones was evaluated by the enzyme-linked immunosorbent assay (ELISA) method. The expression of brain-derived neurotrophic factor) <em>BDNF</em>)<em>,</em> nerve growth factor (<em>NGF</em>)<em>,</em> ciliary neurotrophic factor<!--> <!-->(<em>CNTF</em>)) genes in hippocampal and the expression of glial fibrillary acidic protein (GFAP) in subventricular zone (SVZ) tissue were evaluated.</div></div><div><h3>Results</h3><div>The serum estrogen and FSH increased significantly in Proestrous group (p < 0.001). Also, progesterone and prolactin hormones were significantly increased in the Diaestrus group (p < 0.001). The expression levels of <em>BDNF</em>, <em>NGF,</em> and <em>CNTF</em> significantly increased in the hippocampal tissue of Proestrous and Diaestrus groups (p < 0.001). The number of GFAP<sup>+</sup> cells in SVZ of the Proestrous and Diestrous groups had a significant increase (p < 0.05, p < 0.01, p < 0.001).</div></div><div><h3>Conclusion</h3><div>Our data showed that Changes in sex hormones, especially estrogen in the estrous cycle, can cause the production of new neurons and astrocytes in the hippocampus and SVZ. Therefore, the increase in neurotrophic factors in the Proestrus and Diestrus leads to neurogenesis in adult mice brains.</div></div>","PeriodicalId":21997,"journal":{"name":"Steroids","volume":"212 ","pages":"Article 109513"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steroids","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039128X2400151X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) in the adult brain. Sex hormones play an essential role in the development of the brain. The aim of this study was to evaluate the neurogenic changes in the brain at different phases of the estrous cycle in adult mice.
Materials and methods
Female NMRI mice were divided into four groups: 1- Estrous, 2- Proestrous, 3- Metestrous, and 4- Diestrous. Different stages of the estrous cycle were determined by staining of vaginal smears. The level of estrogen, progesterone, prolactin, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) hormones was evaluated by the enzyme-linked immunosorbent assay (ELISA) method. The expression of brain-derived neurotrophic factor) BDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF)) genes in hippocampal and the expression of glial fibrillary acidic protein (GFAP) in subventricular zone (SVZ) tissue were evaluated.
Results
The serum estrogen and FSH increased significantly in Proestrous group (p < 0.001). Also, progesterone and prolactin hormones were significantly increased in the Diaestrus group (p < 0.001). The expression levels of BDNF, NGF, and CNTF significantly increased in the hippocampal tissue of Proestrous and Diaestrus groups (p < 0.001). The number of GFAP+ cells in SVZ of the Proestrous and Diestrous groups had a significant increase (p < 0.05, p < 0.01, p < 0.001).
Conclusion
Our data showed that Changes in sex hormones, especially estrogen in the estrous cycle, can cause the production of new neurons and astrocytes in the hippocampus and SVZ. Therefore, the increase in neurotrophic factors in the Proestrus and Diestrus leads to neurogenesis in adult mice brains.
期刊介绍:
STEROIDS is an international research journal devoted to studies on all chemical and biological aspects of steroidal moieties. The journal focuses on both experimental and theoretical studies on the biology, chemistry, biosynthesis, metabolism, molecular biology, physiology and pharmacology of steroids and other molecules that target or regulate steroid receptors. Manuscripts presenting clinical research related to steroids, steroid drug development, comparative endocrinology of steroid hormones, investigations on the mechanism of steroid action and steroid chemistry are all appropriate for submission for peer review. STEROIDS publishes both original research and timely reviews. For details concerning the preparation of manuscripts see Instructions to Authors, which is published in each issue of the journal.