Amino Turbo Chirality and Its Asymmetric Control.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Biology Pub Date : 2024-09-19 eCollection Date: 2024-01-01 DOI:10.34133/research.0474
Ting Xu, Yu Wang, Shengzhou Jin, Anis U Rahman, Xianghua Yan, Qingkai Yuan, Hao Liu, Jia-Yin Wang, Wenxin Yan, Yinchun Jiao, Ruibin Liang, Guigen Li
{"title":"Amino Turbo Chirality and Its Asymmetric Control.","authors":"Ting Xu, Yu Wang, Shengzhou Jin, Anis U Rahman, Xianghua Yan, Qingkai Yuan, Hao Liu, Jia-Yin Wang, Wenxin Yan, Yinchun Jiao, Ruibin Liang, Guigen Li","doi":"10.34133/research.0474","DOIUrl":null,"url":null,"abstract":"<p><p>A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have been designed and synthesized asymmetrically. The absolute configurations and conformations of these types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, which may play an important role for drug design, discovery, and development. Three propellers of turbo framework are covalently connected to a chiral C(sp<sup>3</sup>) center via C(sp<sup>2</sup>)-C(sp<sup>3</sup>) bonding along with a C-N axis, while one of them is orientated away from the same carbon chiral center. The turbo or propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (<i>PPP</i>) and counterclockwise (<i>MMM</i>), respectively. The turbo stereogenicity was found to depend on the center chirality of sulfonimine auxiliary instead of the chiral C(sp<sup>3</sup>) center, i.e., (<i>S</i>)- and (<i>R</i>)-sulfinyl centers led to the asymmetric formation of <i>PPP-</i> and <i>MMM</i>-configurations, respectively. Computational studies were conducted on relative energies for rotational barriers of a turbo target along the C-N anchor and the transition pathway between 2 enantiomers meeting our experimental observations. This work is anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have been designed and synthesized asymmetrically. The absolute configurations and conformations of these types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, which may play an important role for drug design, discovery, and development. Three propellers of turbo framework are covalently connected to a chiral C(sp3) center via C(sp2)-C(sp3) bonding along with a C-N axis, while one of them is orientated away from the same carbon chiral center. The turbo or propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (PPP) and counterclockwise (MMM), respectively. The turbo stereogenicity was found to depend on the center chirality of sulfonimine auxiliary instead of the chiral C(sp3) center, i.e., (S)- and (R)-sulfinyl centers led to the asymmetric formation of PPP- and MMM-configurations, respectively. Computational studies were conducted on relative energies for rotational barriers of a turbo target along the C-N anchor and the transition pathway between 2 enantiomers meeting our experimental observations. This work is anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.

氨基酸涡轮手性及其不对称控制
我们设计并不对称地合成了一系列含有中心手性、定向手性和涡轮手性 3 种手性元素的新靶标。这些手性的绝对构型和构象是通过手性磺胺辅助剂同时控制的,并通过 X 射线衍射分析明确确定。这些目标包括α-非天然氨基酸衍生物,它们可能在药物设计、发现和开发中发挥重要作用。涡轮框架的三个螺旋桨通过 C(sp2)-C(sp3) 键与一个手性 C(sp3) 中心共价连接,并沿着 C-N 轴,而其中一个螺旋桨的方向则远离同一个碳手性中心。涡轮手性或螺旋桨手性的特点是两种螺旋桨分子排列方式,分别是顺时针(PPP)和逆时针(MMM)。研究发现,涡轮立体性取决于磺酰亚胺辅助中心的手性,而不是手性 C(sp3)中心,即(S)-和(R)-亚磺酰亚胺中心分别导致 PPP 和 MMM 构型的不对称形成。计算研究了涡轮目标物沿 C-N 锚旋转障碍的相对能量,以及符合我们实验观察结果的两种对映体之间的过渡途径。预计这项工作未来将对化学、生物医学和材料科学产生广泛影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信