Recent development in CRISPR-Cas systems for human protozoan diseases.

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Utkarsh Gangwar, Himashree Choudhury, Risha Shameem, Yashi Singh, Abhisheka Bansal
{"title":"Recent development in CRISPR-Cas systems for human protozoan diseases.","authors":"Utkarsh Gangwar, Himashree Choudhury, Risha Shameem, Yashi Singh, Abhisheka Bansal","doi":"10.1016/bs.pmbts.2024.07.010","DOIUrl":null,"url":null,"abstract":"<p><p>Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2024.07.010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.

针对人类原生动物疾病的 CRISPR-Cas 系统的最新发展。
原生动物寄生虫病给全球健康造成了巨大负担。了解这些疾病的发病机理对于开发疫苗和药物等干预策略至关重要。操纵寄生虫的基因组对于深入了解其基本生物学特性至关重要。传统的基因组操作方法依赖于随机同源重组事件,这就需要将培养的寄生虫在药物压力下维持数月,以产生所需的转基因。巨型核酸酶(MNs)、锌指核酸酶(ZFNs)和转录激活剂样效应核酸酶(TALENs)的引入大大缩短了获得所需修饰所需的时间。不过,这些核酸酶的设计也有其复杂性。CRISPR(Clustered regularly interspaced short palindromic repeats)/Cas(CRISPR 相关蛋白)是最新的基因编辑工具,为原生动物寄生虫基因组的精确操作提供了高效便捷的方法。在本章中,我们阐述了在疟原虫、利什曼原虫和锥虫中使用 CRISPR-Cas9 系统的各种策略。我们还讨论了 CRISPR-Cas9 在了解寄生虫生物学、开发抗药机制、基因驱动和诊断感染方面的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信