Plasmodiophora brassicae effector PbPE23 induces necrotic responses in both host and non-host plants.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES
Md Musharaf Hossain, Edel Pérez López, Christopher D Todd, Yangdou Wei, Peta C Bonham-Smith
{"title":"<i>Plasmodiophora brassicae</i> effector PbPE23 induces necrotic responses in both host and non-host plants.","authors":"Md Musharaf Hossain, Edel Pérez López, Christopher D Todd, Yangdou Wei, Peta C Bonham-Smith","doi":"10.1094/PHYTO-02-24-0064-R","DOIUrl":null,"url":null,"abstract":"<p><p><i>Plasmodiophora brassicae</i> is an obligate biotroph that causes clubroot disease in cruciferous plants, including canola and Arabidopsis. In contrast to most known bacterial, oomycete and fungal pathogens that colonize at the host apoplastic space, the protist <i>P. brassicae</i> establishes an intracellular colonization within various types of root cells and secretes a plethora of effector proteins to distinct cellular compartments favourable for survival and growth of the pathogen during pathogenesis. Identification and functional characterization of <i>P. brassicae</i> effectors has been hampered by the limited understanding of this unique pathosystem. Here, we report a <i>P. brassicae</i> effector, PbPE23, containing a Ser/Thr kinase domain, that induces necrosis after heterologous expression by leaf infiltration in both host and non-host plants. While PbPE23 is an active kinase, the kinase activity itself is not required for triggering the necrosis in plants. PbPE23 shows a nucleocytoplasmic localization in <i>Nicotiana benthamiana</i> and its N-terminal <sup>25</sup>TPdPAQKQ<sup>32</sup> sequence, resembling the contiguous hydrophilic TPAP motif and Q-rich region in many Nep1-like proteins (NLPs) from plant-associated microbes, is required for the induction of necrosis. Further, transcript profiling of <i>PbPE23</i> reveals its high expression at the transition stages from primary to secondary infection, suggesting its potential involvement in the development of clubroot disease.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-02-24-0064-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmodiophora brassicae is an obligate biotroph that causes clubroot disease in cruciferous plants, including canola and Arabidopsis. In contrast to most known bacterial, oomycete and fungal pathogens that colonize at the host apoplastic space, the protist P. brassicae establishes an intracellular colonization within various types of root cells and secretes a plethora of effector proteins to distinct cellular compartments favourable for survival and growth of the pathogen during pathogenesis. Identification and functional characterization of P. brassicae effectors has been hampered by the limited understanding of this unique pathosystem. Here, we report a P. brassicae effector, PbPE23, containing a Ser/Thr kinase domain, that induces necrosis after heterologous expression by leaf infiltration in both host and non-host plants. While PbPE23 is an active kinase, the kinase activity itself is not required for triggering the necrosis in plants. PbPE23 shows a nucleocytoplasmic localization in Nicotiana benthamiana and its N-terminal 25TPdPAQKQ32 sequence, resembling the contiguous hydrophilic TPAP motif and Q-rich region in many Nep1-like proteins (NLPs) from plant-associated microbes, is required for the induction of necrosis. Further, transcript profiling of PbPE23 reveals its high expression at the transition stages from primary to secondary infection, suggesting its potential involvement in the development of clubroot disease.

黄铜疫霉菌效应子 PbPE23 可诱导寄主植物和非寄主植物产生坏死反应。
Plasmodiophora brassicae 是一种必须的生物营养体,会引起十字花科植物(包括油菜和拟南芥)的根瘤病。大多数已知的细菌、卵菌和真菌病原体都是在宿主的细胞质空间定殖,与此不同的是,黄铜疫霉原生质体在各种类型的根细胞内建立细胞内定殖,并在致病过程中向有利于病原体生存和生长的不同细胞区分泌大量效应蛋白。由于对这一独特病理系统的了解有限,黄铜病菌效应蛋白的鉴定和功能表征一直受到阻碍。在此,我们报告了一种含 Ser/Thr 激酶结构域的 P. brassicae 效应子 PbPE23,它通过叶片浸润在寄主植物和非寄主植物中异源表达后诱导坏死。虽然 PbPE23 是一种活性激酶,但引发植物坏死并不需要激酶活性本身。PbPE23 在烟草中显示出核胞质定位,其 N 端 25TPdPAQKQ32 序列类似于植物相关微生物中许多类似 Nep1 蛋白(NLPs)的连续亲水 TPAP 基序和富含 Q 的区域,是诱导坏死所必需的。此外,PbPE23 的转录谱分析显示,在从原发感染到继发感染的过渡阶段,它的表达量很高,这表明它可能参与了球根病的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信