Tunnel and underground engineering rock mass water inrush damage and acoustic emission characteristics.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0307700
Jiajun Zeng, Chengzhi Pu, Qiyun Wang, Qingqing Shen, Qiang Zeng, Zhicheng Yang
{"title":"Tunnel and underground engineering rock mass water inrush damage and acoustic emission characteristics.","authors":"Jiajun Zeng, Chengzhi Pu, Qiyun Wang, Qingqing Shen, Qiang Zeng, Zhicheng Yang","doi":"10.1371/journal.pone.0307700","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve the actual situation of water pressure stabilization during underground and tunnel water inrush disasters, the team independently developed a stable water pressure test system and conducted fracture and failure tests on fissured rock masses under the coupling effect of 1MPa stable water pressure and stress and without water pressure. Combined with data collected by acoustic emission instruments, the mechanical characteristics of fracture and failure, crack propagation mechanism, and acoustic emission response mechanism of fissured rock masses under the coupling effect of stable hydraulic pressure and stress were studied. The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. The longer propagation path increases the range and effect of hydraulic pressure, and the initial crack propagation length of fissured rock mass under hydraulic pressure is also significantly longer than that of specimens without hydraulic pressure; During the loading process, both the acoustic emission ringing count and damage variable can be divided into four stages. From the cumulative total number of acoustic emission ringing counts, it can be seen that during the loading process, the total number of acoustic emission ringing in fissured rock masses subjected to hydraulic pressure is significantly lower than that of specimens without hydraulic pressure, and the trend is also relatively stable.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0307700","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve the actual situation of water pressure stabilization during underground and tunnel water inrush disasters, the team independently developed a stable water pressure test system and conducted fracture and failure tests on fissured rock masses under the coupling effect of 1MPa stable water pressure and stress and without water pressure. Combined with data collected by acoustic emission instruments, the mechanical characteristics of fracture and failure, crack propagation mechanism, and acoustic emission response mechanism of fissured rock masses under the coupling effect of stable hydraulic pressure and stress were studied. The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.14%; The variation pattern of peak strength of fissured rock mass with increasing crack inclination angle under stable hydraulic pressure changes from a decrease and then an increase in the absence of hydraulic pressure to an increasing trend; The crack propagation length of low angle fissured rock mass is generally higher than that of high angle fissured specimens. The longer propagation path increases the range and effect of hydraulic pressure, and the initial crack propagation length of fissured rock mass under hydraulic pressure is also significantly longer than that of specimens without hydraulic pressure; During the loading process, both the acoustic emission ringing count and damage variable can be divided into four stages. From the cumulative total number of acoustic emission ringing counts, it can be seen that during the loading process, the total number of acoustic emission ringing in fissured rock masses subjected to hydraulic pressure is significantly lower than that of specimens without hydraulic pressure, and the trend is also relatively stable.

隧道和地下工程岩体涌水破坏和声发射特性。
针对地下及隧道涌水灾害时稳定水压的实际情况,课题组自主研发了稳定水压试验系统,在1MPa稳定水压与应力耦合作用下和无水压条件下,对裂隙岩体进行了断裂破坏试验。结合声发射仪器采集的数据,研究了稳定水压和应力耦合作用下裂隙岩体的断裂破坏力学特征、裂纹扩展机理和声发射响应机理。结果表明:在整个实验过程中,水压保持持续稳定,下降幅度仅为 0.14%;在水压稳定的情况下,裂隙岩体的峰值强度随裂隙倾角增大的变化规律由无水压时的先减小后增大变为增大趋势;低角度裂隙岩体的裂隙扩展长度普遍高于高角度裂隙试样。较长的裂纹扩展路径增加了水压的作用范围和作用效果,水压作用下裂隙岩体的初始裂纹扩展长度也明显长于无水压作用下的裂隙岩体;在加载过程中,声发射振铃次数和破坏变量均可分为四个阶段。从累计声发射振铃总数可以看出,在加载过程中,受水压作用的裂隙岩体的声发射振铃总数明显低于无水压作用的试样,且趋势也相对稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信