Tahera Alnaseri, Leila Musavi, Timothy Deming, Jason Roostaeian, Andrew Da Lio, Thomas G Mason, Michael R DeLong
{"title":"The Surfactant Properties of Clindamycin as a Useful Adjunct for Removing Ruptured Silicone Implants.","authors":"Tahera Alnaseri, Leila Musavi, Timothy Deming, Jason Roostaeian, Andrew Da Lio, Thomas G Mason, Michael R DeLong","doi":"10.1097/GOX.0000000000006176","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Silicone gel removal after breast implant rupture is a difficult task. Silicone is hydrophobic and thus cannot be irrigated effectively with saline. Attempts at mechanical removal with sponges are often partially successful. Incomplete removal results in persistent silicone contamination with possible local inflammation, infection, and silicone granulomata. In this partially quantitative investigation, we assess the de-adhesion ability of different clindamycin formulations against known surfactant controls when combined with silicone gel.</p><p><strong>Methods: </strong>To demonstrate surfactant properties in vitro, clindamycin phosphate, clindamycin hydrochloride, and a known surfactant, sodium dodecyl sulfate (SDS), were compared. An amount of 170 g of silicone gel placed in a dry glass container exhibited strong adherence to the container walls. In separate trials, clindamycin phosphate (300 mg in 100 mL), clindamycin HCl (300 mg in 100 mL), and SDS (1 g in 100 mL) solutions with normal saline were added to the silicone aggregate, and de-adhesion properties were compared.</p><p><strong>Results: </strong>All solutions aided in the de-adhesion of the sticky silicone from glass substrate. The SDS had the strongest effect, followed by clindamycin phosphate and then clindamycin HCl. The observed interactions suggested that all of the solutions behaved as ionic surfactant coating the silicone with negative charges via adsorption. However, the phosphate anionic formulation was associated with a greater surfactant effect than HCl.</p><p><strong>Conclusions: </strong>Clindamycin acts as a surfactant to aid in the clinical removal of ruptured silicone gel. Clindamycin phosphate seems to have a stronger effect than clindamycin HCl, likely related to the negative charges on the phosphate groups.</p>","PeriodicalId":20149,"journal":{"name":"Plastic and Reconstructive Surgery Global Open","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastic and Reconstructive Surgery Global Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/GOX.0000000000006176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Silicone gel removal after breast implant rupture is a difficult task. Silicone is hydrophobic and thus cannot be irrigated effectively with saline. Attempts at mechanical removal with sponges are often partially successful. Incomplete removal results in persistent silicone contamination with possible local inflammation, infection, and silicone granulomata. In this partially quantitative investigation, we assess the de-adhesion ability of different clindamycin formulations against known surfactant controls when combined with silicone gel.
Methods: To demonstrate surfactant properties in vitro, clindamycin phosphate, clindamycin hydrochloride, and a known surfactant, sodium dodecyl sulfate (SDS), were compared. An amount of 170 g of silicone gel placed in a dry glass container exhibited strong adherence to the container walls. In separate trials, clindamycin phosphate (300 mg in 100 mL), clindamycin HCl (300 mg in 100 mL), and SDS (1 g in 100 mL) solutions with normal saline were added to the silicone aggregate, and de-adhesion properties were compared.
Results: All solutions aided in the de-adhesion of the sticky silicone from glass substrate. The SDS had the strongest effect, followed by clindamycin phosphate and then clindamycin HCl. The observed interactions suggested that all of the solutions behaved as ionic surfactant coating the silicone with negative charges via adsorption. However, the phosphate anionic formulation was associated with a greater surfactant effect than HCl.
Conclusions: Clindamycin acts as a surfactant to aid in the clinical removal of ruptured silicone gel. Clindamycin phosphate seems to have a stronger effect than clindamycin HCl, likely related to the negative charges on the phosphate groups.
期刊介绍:
Plastic and Reconstructive Surgery—Global Open is an open access, peer reviewed, international journal focusing on global plastic and reconstructive surgery.Plastic and Reconstructive Surgery—Global Open publishes on all areas of plastic and reconstructive surgery, including basic science/experimental studies pertinent to the field and also clinical articles on such topics as: breast reconstruction, head and neck surgery, pediatric and craniofacial surgery, hand and microsurgery, wound healing, and cosmetic and aesthetic surgery. Clinical studies, experimental articles, ideas and innovations, and techniques and case reports are all welcome article types. Manuscript submission is open to all surgeons, researchers, and other health care providers world-wide who wish to communicate their research results on topics related to plastic and reconstructive surgery. Furthermore, Plastic and Reconstructive Surgery—Global Open, a complimentary journal to Plastic and Reconstructive Surgery, provides an open access venue for the publication of those research studies sponsored by private and public funding agencies that require open access publication of study results. Its mission is to disseminate high quality, peer reviewed research in plastic and reconstructive surgery to the widest possible global audience, through an open access platform. As an open access journal, Plastic and Reconstructive Surgery—Global Open offers its content for free to any viewer. Authors of articles retain their copyright to the materials published. Additionally, Plastic and Reconstructive Surgery—Global Open provides rapid review and publication of accepted papers.