Rafael Jorge León Morcillo, Jesús Leal-López, Alberto Férez-Gómez, Lidia López-Serrano, Edurne Baroja-Fernández, Samuel Gámez-Arcas, Germán Tortosa, Leonel E López, José Manuel Estevez, Verónica G Doblas, Laura Frías-España, María Dolores García-Pedrajas, Jorge Sarmiento-Villamil, Javier Pozueta-Romero
{"title":"RAPID ALKALINIZATION FACTOR 22 is a key modulator of the root hair growth responses to fungal ethylene emissions in Arabidopsis.","authors":"Rafael Jorge León Morcillo, Jesús Leal-López, Alberto Férez-Gómez, Lidia López-Serrano, Edurne Baroja-Fernández, Samuel Gámez-Arcas, Germán Tortosa, Leonel E López, José Manuel Estevez, Verónica G Doblas, Laura Frías-España, María Dolores García-Pedrajas, Jorge Sarmiento-Villamil, Javier Pozueta-Romero","doi":"10.1093/plphys/kiae484","DOIUrl":null,"url":null,"abstract":"<p><p>In Arabidopsis (Arabidopsis thaliana (L.) Heynh), exposure to volatile compounds (VCs) emitted by Penicillium aurantiogriseum promotes root hair (RH) proliferation and hyper-elongation through mechanisms involving ethylene, auxin, and photosynthesis signaling. In addition, this treatment enhances the levels of the small signaling peptide RAPID ALKALINIZATION FACTOR 22 (RALF22). Here, we used genetics to address the role of RALF22 in fungal VC-promoted RH growth and to identify the bioactive fungal VC. We found that RHs of ralf22 and feronia (fer-4) plants impaired in the expression of RALF22 and its receptor FERONIA, respectively, responded weakly to fungal VCs. Unlike in wild-type roots, fungal VC exposure did not enhance RALF22 transcript levels in roots of fer-4 and ethylene- and auxin-insensitive mutants. In ralf22 and fer-4 roots, this treatment did not enhance the levels of ERS2 transcripts encoding one member of the ethylene receptor family and those of some RH-related genes. RHs of ers2-1 and the rsl2rsl4 double mutants impaired in the expression of ERS2 and the ethylene- and auxin-responsive ROOT HAIR DEFECTIVE 6-LIKE 2 and 4 transcription factors, respectively, weakly responded to fungal VCs. Moreover, roots of plants defective in photosynthetic responsiveness to VCs exhibited weak RALF22 expression and RH growth responses to fungal VCs. VCs of ΔefeA strains of P. aurantiogriseum cultures impaired in ethylene synthesis weakly promoted RH proliferation and elongation in exposed plants. We conclude that RALF22 simultaneously functions as a transcriptionally regulated signaling molecule that participates in the ethylene, auxin, and photosynthesis signaling-mediated RH growth response to fungal ethylene emissions and regulation of ethylene perception in RHs.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":"2890-2904"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae484","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In Arabidopsis (Arabidopsis thaliana (L.) Heynh), exposure to volatile compounds (VCs) emitted by Penicillium aurantiogriseum promotes root hair (RH) proliferation and hyper-elongation through mechanisms involving ethylene, auxin, and photosynthesis signaling. In addition, this treatment enhances the levels of the small signaling peptide RAPID ALKALINIZATION FACTOR 22 (RALF22). Here, we used genetics to address the role of RALF22 in fungal VC-promoted RH growth and to identify the bioactive fungal VC. We found that RHs of ralf22 and feronia (fer-4) plants impaired in the expression of RALF22 and its receptor FERONIA, respectively, responded weakly to fungal VCs. Unlike in wild-type roots, fungal VC exposure did not enhance RALF22 transcript levels in roots of fer-4 and ethylene- and auxin-insensitive mutants. In ralf22 and fer-4 roots, this treatment did not enhance the levels of ERS2 transcripts encoding one member of the ethylene receptor family and those of some RH-related genes. RHs of ers2-1 and the rsl2rsl4 double mutants impaired in the expression of ERS2 and the ethylene- and auxin-responsive ROOT HAIR DEFECTIVE 6-LIKE 2 and 4 transcription factors, respectively, weakly responded to fungal VCs. Moreover, roots of plants defective in photosynthetic responsiveness to VCs exhibited weak RALF22 expression and RH growth responses to fungal VCs. VCs of ΔefeA strains of P. aurantiogriseum cultures impaired in ethylene synthesis weakly promoted RH proliferation and elongation in exposed plants. We conclude that RALF22 simultaneously functions as a transcriptionally regulated signaling molecule that participates in the ethylene, auxin, and photosynthesis signaling-mediated RH growth response to fungal ethylene emissions and regulation of ethylene perception in RHs.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.