The conotoxin Contulakin-G reverses hypersensitivity observed in rodent models of cancer-induced bone pain without inducing tolerance or motor disturbance.

IF 5.9 1区 医学 Q1 ANESTHESIOLOGY
Laurent F Martin, Moyad Almuslim, Khaled A Ismail, Mohab M Ibrahim, Aubin Moutal, Kevin Cheng, Harrison J Stratton, Theodore J Price, Todd W Vanderah, Baldomero M Olivera, Rajesh Khanna, Amol Patwardhan
{"title":"The conotoxin Contulakin-G reverses hypersensitivity observed in rodent models of cancer-induced bone pain without inducing tolerance or motor disturbance.","authors":"Laurent F Martin, Moyad Almuslim, Khaled A Ismail, Mohab M Ibrahim, Aubin Moutal, Kevin Cheng, Harrison J Stratton, Theodore J Price, Todd W Vanderah, Baldomero M Olivera, Rajesh Khanna, Amol Patwardhan","doi":"10.1097/j.pain.0000000000003391","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>As the incidence and survival rates of patients with cancer continues to grow, an increasing number of people are living with comorbidities, which often manifests as cancer-induced bone pain (CIBP). The majority of patients with CIBP report poor pain control from currently available analgesics. A conotoxin, Contulakin-G (CGX), has been demonstrated to be an antinociceptive agent in postsurgical and neuropathic pain states via a neurotensin receptor 2 (NTSR2)-mediated pathway. However, the efficacy and side effect profile of CGX have never been assessed in CIBP. Here, we evaluated CGX's antinociceptive potential in a rodent model of CIBP. We hypothesized that CGX engages the NTSR2 pathway, providing pain relief with minimal tolerance and motor side effects. Our results demonstrated that CGX intrathecal injection in mice with CIBP attenuated both spontaneous pain behaviors and evoked mechanical hypersensitivity, regardless of their sex. Furthermore, the antinociceptive effect of CGX was dependent upon expression of NTSR2 and the R-type voltage-gated calcium channel (Cav2.3); gene editing of these targets abolished CGX antinociception without affecting morphine antinociception. Examination of the side effect profile of CGX demonstrated that, unlike morphine, chronic intrathecal infusion maintained antinociception with reduced tolerance in rats with CIBP. Moreover, at antinociceptive doses, CGX had no impact on motor behavior in rodents with CIBP. Finally, RNAScope and immunoblotting analysis revealed expression of NTSR2 in both dorsal and ventral horns, while Cav2.3 was minimally expressed in the ventral horn, possibly explaining the sensory selectivity of CGX. Together, these findings support advancing CGX as a potential therapeutic for cancer pain.</p>","PeriodicalId":19921,"journal":{"name":"PAIN®","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAIN®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.pain.0000000000003391","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: As the incidence and survival rates of patients with cancer continues to grow, an increasing number of people are living with comorbidities, which often manifests as cancer-induced bone pain (CIBP). The majority of patients with CIBP report poor pain control from currently available analgesics. A conotoxin, Contulakin-G (CGX), has been demonstrated to be an antinociceptive agent in postsurgical and neuropathic pain states via a neurotensin receptor 2 (NTSR2)-mediated pathway. However, the efficacy and side effect profile of CGX have never been assessed in CIBP. Here, we evaluated CGX's antinociceptive potential in a rodent model of CIBP. We hypothesized that CGX engages the NTSR2 pathway, providing pain relief with minimal tolerance and motor side effects. Our results demonstrated that CGX intrathecal injection in mice with CIBP attenuated both spontaneous pain behaviors and evoked mechanical hypersensitivity, regardless of their sex. Furthermore, the antinociceptive effect of CGX was dependent upon expression of NTSR2 and the R-type voltage-gated calcium channel (Cav2.3); gene editing of these targets abolished CGX antinociception without affecting morphine antinociception. Examination of the side effect profile of CGX demonstrated that, unlike morphine, chronic intrathecal infusion maintained antinociception with reduced tolerance in rats with CIBP. Moreover, at antinociceptive doses, CGX had no impact on motor behavior in rodents with CIBP. Finally, RNAScope and immunoblotting analysis revealed expression of NTSR2 in both dorsal and ventral horns, while Cav2.3 was minimally expressed in the ventral horn, possibly explaining the sensory selectivity of CGX. Together, these findings support advancing CGX as a potential therapeutic for cancer pain.

在癌症诱发骨痛的啮齿类动物模型中,康妥毒素 Contulakin-G 可逆转观察到的超敏反应,而不会诱发耐受性或运动障碍。
摘要:随着癌症患者发病率和存活率的不断增长,越来越多的人患有合并症,这通常表现为癌症诱发的骨痛(CIBP)。大多数 CIBP 患者表示,目前可用的止痛药对疼痛的控制效果不佳。一种名为 Contulakin-G (CGX) 的锥毒素已被证明是一种通过神经紧张素受体 2 (NTSR2) 介导的途径治疗手术后疼痛和神经病理性疼痛的镇痛剂。然而,CGX 在 CIBP 中的疗效和副作用还从未进行过评估。在此,我们评估了 CGX 在啮齿动物 CIBP 模型中的抗痛觉潜力。我们推测 CGX 可参与 NTSR2 通路,在缓解疼痛的同时将耐受性和运动副作用降至最低。我们的研究结果表明,CIBP 小鼠鞘内注射 CGX 可减轻自发疼痛行为和诱发的机械超敏反应,与小鼠性别无关。此外,CGX的抗痛觉作用依赖于NTSR2和R型电压门控钙通道(Cav2.3)的表达;对这些靶点进行基因编辑可消除CGX的抗痛觉作用,而不影响吗啡的抗痛觉作用。对 CGX 副作用的研究表明,与吗啡不同,长期鞘内输注可维持 CIBP 大鼠的抗痛性,并降低耐受性。此外,在抗痛觉剂量下,CGX 对 CIBP 啮齿动物的运动行为没有影响。最后,RNAScope 和免疫印迹分析表明,NTSR2 在背角和腹角均有表达,而 Cav2.3 在腹角的表达极少,这可能是 CGX 感觉选择性的原因。总之,这些发现支持将 CGX 作为一种潜在的癌痛疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PAIN®
PAIN® 医学-临床神经学
CiteScore
12.50
自引率
8.10%
发文量
242
审稿时长
9 months
期刊介绍: PAIN® is the official publication of the International Association for the Study of Pain and publishes original research on the nature,mechanisms and treatment of pain.PAIN® provides a forum for the dissemination of research in the basic and clinical sciences of multidisciplinary interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信