{"title":"Recent Advances in the Preparation, Properties, and Applications of Solid Lipid Nanoparticles in Drug Delivery.","authors":"Ujjwal Kumar Biswas, Anindya Bose, Ankita Parmanik","doi":"10.2174/0122117385333634240911075833","DOIUrl":null,"url":null,"abstract":"<p><p>Solid lipid nanoparticles (SLNs) are one of the extensively utilized nanocarriers in the pharmaceutical field due to their biocompatibility and biodegradability. These features of the carrier system have fuelled its use as the drug delivery system since the last three decades. This review presents different SLN preparation techniques, such as high shear homogenization, hot homogenization, cold homogenization, microemulsion-based technique, etc. The physicochemical nature of SLNs, comprising drug loading, drug release, particle size, zeta potential, stability, cytotoxicity, and cellular uptake, has been concisely discussed. The article also explains why SLNs are preferred to develop drug delivery systems in several pharmaceutical preparations. The key ingredients like lipid, surfactant/ stabilizer accompanied by co-surfactant, cryoprotectant, or charge modifiers used to fabricate SLNs are also briefly conferred. Here is an elaborate discussion of drugs that are used through various routes by the SLN carrier system and their outcome for utilization of this system. Regulatory aspects, patent aspects, and future prospects of SLN are also discussed here.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385333634240911075833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Solid lipid nanoparticles (SLNs) are one of the extensively utilized nanocarriers in the pharmaceutical field due to their biocompatibility and biodegradability. These features of the carrier system have fuelled its use as the drug delivery system since the last three decades. This review presents different SLN preparation techniques, such as high shear homogenization, hot homogenization, cold homogenization, microemulsion-based technique, etc. The physicochemical nature of SLNs, comprising drug loading, drug release, particle size, zeta potential, stability, cytotoxicity, and cellular uptake, has been concisely discussed. The article also explains why SLNs are preferred to develop drug delivery systems in several pharmaceutical preparations. The key ingredients like lipid, surfactant/ stabilizer accompanied by co-surfactant, cryoprotectant, or charge modifiers used to fabricate SLNs are also briefly conferred. Here is an elaborate discussion of drugs that are used through various routes by the SLN carrier system and their outcome for utilization of this system. Regulatory aspects, patent aspects, and future prospects of SLN are also discussed here.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.