Smartphone-based scans of palate models of newborns with cleft lip and palate: Outlooks for three-dimensional image capturing and machine learning plate tool.
José Wittor de Macêdo Santos, Andreas Albert Mueller, Benito K Benitez, Yoriko Lill, Prasad Nalabothu, Francisco Wilker Mustafa Gomes Muniz
{"title":"Smartphone-based scans of palate models of newborns with cleft lip and palate: Outlooks for three-dimensional image capturing and machine learning plate tool.","authors":"José Wittor de Macêdo Santos, Andreas Albert Mueller, Benito K Benitez, Yoriko Lill, Prasad Nalabothu, Francisco Wilker Mustafa Gomes Muniz","doi":"10.1111/ocr.12859","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate the performance of smartphone scanning applications (apps) in acquiring 3D meshes of cleft palate models. Secondarily, to validate a machine learning (ML) tool for computing automated presurgical plate (PSP).</p><p><strong>Materials and methods: </strong>We conducted a comparative analysis of two apps on 15 cleft palate models: five unilateral cleft lip and palate (UCLP), five bilateral cleft lip and palate (BCLP) and five isolated cleft palate (ICP). The scans were performed with and without a mirror to simulate intraoral acquisition. The 3D reconstructions were compared to control reconstructions acquired using a professional intraoral scanner using open-source software.</p><p><strong>Results: </strong>Thirty 3D scans were acquired by each app, totalling 60 scans. The main findings were in the UCLP sample, where the KIRI scans without a mirror (0.22 ± 0.03 mm) had a good performance with a deviation from the ground truth comparable to the control group (0.14 ± 0.13 mm) (p = .653). Scaniverse scans with a mirror showed the lowest accuracy of all the samples. The ML tool was able to predict the landmarks and automatically generate the plates, except in ICP models. KIRI scans' plates showed better performance with (0.22 ± 0.06 mm) and without mirror (0.18 ± 0.05 mm), being comparable with controls (0.16 ± 0.08 mm) (p = .954 and p = .439, respectively).</p><p><strong>Conclusions: </strong>KIRI Engine performed better in scanning UCLP models without a mirror. The ML tool showed a high capability for morphology recognition and automated PSP generation.</p>","PeriodicalId":19652,"journal":{"name":"Orthodontics & Craniofacial Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthodontics & Craniofacial Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ocr.12859","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To evaluate the performance of smartphone scanning applications (apps) in acquiring 3D meshes of cleft palate models. Secondarily, to validate a machine learning (ML) tool for computing automated presurgical plate (PSP).
Materials and methods: We conducted a comparative analysis of two apps on 15 cleft palate models: five unilateral cleft lip and palate (UCLP), five bilateral cleft lip and palate (BCLP) and five isolated cleft palate (ICP). The scans were performed with and without a mirror to simulate intraoral acquisition. The 3D reconstructions were compared to control reconstructions acquired using a professional intraoral scanner using open-source software.
Results: Thirty 3D scans were acquired by each app, totalling 60 scans. The main findings were in the UCLP sample, where the KIRI scans without a mirror (0.22 ± 0.03 mm) had a good performance with a deviation from the ground truth comparable to the control group (0.14 ± 0.13 mm) (p = .653). Scaniverse scans with a mirror showed the lowest accuracy of all the samples. The ML tool was able to predict the landmarks and automatically generate the plates, except in ICP models. KIRI scans' plates showed better performance with (0.22 ± 0.06 mm) and without mirror (0.18 ± 0.05 mm), being comparable with controls (0.16 ± 0.08 mm) (p = .954 and p = .439, respectively).
Conclusions: KIRI Engine performed better in scanning UCLP models without a mirror. The ML tool showed a high capability for morphology recognition and automated PSP generation.
期刊介绍:
Orthodontics & Craniofacial Research - Genes, Growth and Development is published to serve its readers as an international forum for the presentation and critical discussion of issues pertinent to the advancement of the specialty of orthodontics and the evidence-based knowledge of craniofacial growth and development. This forum is based on scientifically supported information, but also includes minority and conflicting opinions.
The objective of the journal is to facilitate effective communication between the research community and practicing clinicians. Original papers of high scientific quality that report the findings of clinical trials, clinical epidemiology, and novel therapeutic or diagnostic approaches are appropriate submissions. Similarly, we welcome papers in genetics, developmental biology, syndromology, surgery, speech and hearing, and other biomedical disciplines related to clinical orthodontics and normal and abnormal craniofacial growth and development. In addition to original and basic research, the journal publishes concise reviews, case reports of substantial value, invited essays, letters, and announcements.
The journal is published quarterly. The review of submitted papers will be coordinated by the editor and members of the editorial board. It is policy to review manuscripts within 3 to 4 weeks of receipt and to publish within 3 to 6 months of acceptance.