Physiologically based pharmacokinetic modeling of metal nanoparticles for risk assessment of inhalation exposures: a state-of-the-science expert panel review.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY
Nanotoxicology Pub Date : 2024-09-01 Epub Date: 2024-09-23 DOI:10.1080/17435390.2024.2401430
C R Kirman, B Kent, J Bigelow, R A Canady, Q Chen, W C Chou, D Li, Z Lin, V Kumar, A Paini, P Poulin, L M Sweeney, S M Hays
{"title":"Physiologically based pharmacokinetic modeling of metal nanoparticles for risk assessment of inhalation exposures: a state-of-the-science expert panel review.","authors":"C R Kirman, B Kent, J Bigelow, R A Canady, Q Chen, W C Chou, D Li, Z Lin, V Kumar, A Paini, P Poulin, L M Sweeney, S M Hays","doi":"10.1080/17435390.2024.2401430","DOIUrl":null,"url":null,"abstract":"<p><p>A critical review of the current state-of-the-science for the physiologically based pharmacokinetic (PBPK) modeling of metal nanoparticles and their application to human health risk assessment for inhalation exposures was conducted. A systematic literature search was used to identify four model groups (defined as a primary publication along with multiple supplementary publications) subject to review. Using a recent guideline document from the Organization for Economic Cooperation and Development (OECD) for PBPK model evaluation, these model groups were critically peer-reviewed by an independent panel of experts to identify those to be considered for modeling and simulation application. Based upon the expert panel input, model confidence scores for the four model groups ranged from 30 to 41 (out of a maximum score of 50). The three highest-scoring model groups were then applied to compare predictions to a different metal nanoparticle (i.e. not specifically used to parameterize the original models) using a recently published data set for tissue burdens in rats, as well as predicting human tissue burdens expected for corresponding occupational exposures. Overall, the rat models performed reasonably well in predicting the lung but tended to overestimate systemic tissue burdens. Data needs for improving the state-of-the-science, including quantitative particle characterization in tissues, nanoparticle-corona data, long-term exposure data, interspecies extrapolation methods, and human biomonitoring/toxicokinetic data are discussed.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"527-541"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2401430","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A critical review of the current state-of-the-science for the physiologically based pharmacokinetic (PBPK) modeling of metal nanoparticles and their application to human health risk assessment for inhalation exposures was conducted. A systematic literature search was used to identify four model groups (defined as a primary publication along with multiple supplementary publications) subject to review. Using a recent guideline document from the Organization for Economic Cooperation and Development (OECD) for PBPK model evaluation, these model groups were critically peer-reviewed by an independent panel of experts to identify those to be considered for modeling and simulation application. Based upon the expert panel input, model confidence scores for the four model groups ranged from 30 to 41 (out of a maximum score of 50). The three highest-scoring model groups were then applied to compare predictions to a different metal nanoparticle (i.e. not specifically used to parameterize the original models) using a recently published data set for tissue burdens in rats, as well as predicting human tissue burdens expected for corresponding occupational exposures. Overall, the rat models performed reasonably well in predicting the lung but tended to overestimate systemic tissue burdens. Data needs for improving the state-of-the-science, including quantitative particle characterization in tissues, nanoparticle-corona data, long-term exposure data, interspecies extrapolation methods, and human biomonitoring/toxicokinetic data are discussed.

基于生理学的金属纳米粒子药代动力学建模,用于吸入暴露风险评估:科学现状专家小组综述。
对目前基于生理学的金属纳米粒子药代动力学(PBPK)建模及其在吸入暴露的人类健康风险评估中的应用的科学现状进行了严格审查。通过系统的文献检索,确定了四个模型组(定义为一个主要出版物和多个补充出版物)进行审查。利用经济合作与发展组织 (OECD) 最近发布的 PBPK 模型评估指导文件,这些模型组由一个独立的专家小组进行严格的同行评审,以确定哪些模型组可考虑用于建模和模拟应用。根据专家组的意见,四个模型组的模型置信度得分介于 30 分至 41 分之间(最高分为 50 分)。然后,将得分最高的三个模型组用于比较对不同金属纳米粒子的预测(即未专门用于原始模型参数化的金属纳米粒子),使用最近公布的大鼠组织负担数据集,以及预测相应职业暴露的预期人体组织负担。总体而言,大鼠模型在预测肺部方面表现尚可,但往往会高估全身组织负担。讨论了改进科学现状的数据需求,包括组织中颗粒的定量表征、纳米颗粒-电晕数据、长期暴露数据、种间外推法以及人类生物监测/毒物动力学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信