Qiao Yang, Fujing Zhang, Zhixin Hao, Junling Zhuang, Li Huo
{"title":"Chemokine Receptor 4-Targeted PET/CT with [<sup>68</sup>Ga]pentixather in Newly Diagnosed Multiple Myeloma: a Comparative Study with [<sup>68</sup>Ga]pentixafor PET/CT.","authors":"Qiao Yang, Fujing Zhang, Zhixin Hao, Junling Zhuang, Li Huo","doi":"10.1007/s11307-024-01953-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to compare the detection rate of [<sup>68</sup>Ga]pentixather PET/CT and [<sup>68</sup>Ga]pentixafor PET/CT in newly diagnosed multiple myeloma (NDMM) patients, and to explore the value of [<sup>68</sup>Ga]pentixather PET/CT for tumor load assessment.</p><p><strong>Methods: </strong>Nineteen NDMM Patients were prospectively recruited and underwent both [<sup>68</sup>Ga]pentixather PET/CT and [<sup>68</sup>Ga]pentixafor PET/CT. A positive PET scan was defined as the presence of PET-positive focal bone lesions, paraskeletal disease, extramedullary plasmacytoma, or diffuse bone marrow uptake. Lesion numbers, SUVmax and PET-related tumor burden values were compared. The correlations between PET-related tumor burden and clinical risk stratification were analyzed.</p><p><strong>Results: </strong>[<sup>68</sup>Ga]pentixather PET/CT showed a tendency of higher positive rate compared with [<sup>68</sup>Ga]pentixafor PET/CT [94.7% (18/19) vs. 78.9% (15/19), p > 0.05]. Among 14 patients with 151 matched focal bone lesions, [<sup>68</sup>Ga]pentixather PET detected more or equal number of lesions in 13 patients, and demonstrated higher uptake value than <sup>68</sup> Ga-pentixafor PET [SUVmax, 16.8 (9.0, 23.8) vs. 13.4 (6.5, 20.4), p < 0.001]. For PET related-tumor burden, positive correlations of total bone marrow uptake (TBmU) (r = 0.9540, p < 0.0001) and SUVmean of total bone marrow (r = 0.9632, p < 0.0001) in two PET scans were observed. Higher TBmU [7864.9 (5549.2, 11,616.2) vs. 5383.4(4102.7, 11,041.8), p < 0.001], SUVmean of total bone marrow [1.4 (1.1, 2.2) vs. 1.1 (0.7, 2.1), p < 0.001] were demonstrated on [<sup>68</sup>Ga]pentixather PET than [<sup>68</sup>Ga]pentixafor PET. And the level of TBmU in [<sup>68</sup>Ga]pentixather PET and [<sup>68</sup>Ga]pentixafor PET were both elevated in Durie-Salmon Staging (DSS) III than DSS I (p < 0.01).</p><p><strong>Conclusions: </strong>[<sup>68</sup>Ga]pentixather PET/CT performed a non-inferior capability for tumor detection compared to [<sup>68</sup>Ga]pentixafor PET/CT in NDMM patients. [<sup>68</sup>Ga]pentixather PET/CT can assess tumor load in MM patients and depict a significantly higher PET-related total tumor burden than [<sup>68</sup>Ga]pentixafor PET/CT.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-024-01953-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to compare the detection rate of [68Ga]pentixather PET/CT and [68Ga]pentixafor PET/CT in newly diagnosed multiple myeloma (NDMM) patients, and to explore the value of [68Ga]pentixather PET/CT for tumor load assessment.
Methods: Nineteen NDMM Patients were prospectively recruited and underwent both [68Ga]pentixather PET/CT and [68Ga]pentixafor PET/CT. A positive PET scan was defined as the presence of PET-positive focal bone lesions, paraskeletal disease, extramedullary plasmacytoma, or diffuse bone marrow uptake. Lesion numbers, SUVmax and PET-related tumor burden values were compared. The correlations between PET-related tumor burden and clinical risk stratification were analyzed.
Results: [68Ga]pentixather PET/CT showed a tendency of higher positive rate compared with [68Ga]pentixafor PET/CT [94.7% (18/19) vs. 78.9% (15/19), p > 0.05]. Among 14 patients with 151 matched focal bone lesions, [68Ga]pentixather PET detected more or equal number of lesions in 13 patients, and demonstrated higher uptake value than 68 Ga-pentixafor PET [SUVmax, 16.8 (9.0, 23.8) vs. 13.4 (6.5, 20.4), p < 0.001]. For PET related-tumor burden, positive correlations of total bone marrow uptake (TBmU) (r = 0.9540, p < 0.0001) and SUVmean of total bone marrow (r = 0.9632, p < 0.0001) in two PET scans were observed. Higher TBmU [7864.9 (5549.2, 11,616.2) vs. 5383.4(4102.7, 11,041.8), p < 0.001], SUVmean of total bone marrow [1.4 (1.1, 2.2) vs. 1.1 (0.7, 2.1), p < 0.001] were demonstrated on [68Ga]pentixather PET than [68Ga]pentixafor PET. And the level of TBmU in [68Ga]pentixather PET and [68Ga]pentixafor PET were both elevated in Durie-Salmon Staging (DSS) III than DSS I (p < 0.01).
Conclusions: [68Ga]pentixather PET/CT performed a non-inferior capability for tumor detection compared to [68Ga]pentixafor PET/CT in NDMM patients. [68Ga]pentixather PET/CT can assess tumor load in MM patients and depict a significantly higher PET-related total tumor burden than [68Ga]pentixafor PET/CT.
期刊介绍:
Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures.
Some areas that are covered are:
Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes.
The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets.
Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display.
Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging.
Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics.
Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations.
Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.