Crystallographic Dependence of Field Evaporation Energy Barrier in Metals Using Field Evaporation Energy Loss Spectroscopy Mapping.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
François Vurpillot, Constantinos Hatzoglou, Benjamin Klaes, Loic Rousseau, Jean-Baptiste Maillet, Ivan Blum, Baptiste Gault, Alfred Cerezo
{"title":"Crystallographic Dependence of Field Evaporation Energy Barrier in Metals Using Field Evaporation Energy Loss Spectroscopy Mapping.","authors":"François Vurpillot, Constantinos Hatzoglou, Benjamin Klaes, Loic Rousseau, Jean-Baptiste Maillet, Ivan Blum, Baptiste Gault, Alfred Cerezo","doi":"10.1093/mam/ozae083","DOIUrl":null,"url":null,"abstract":"<p><p>Atom probe tomography data are composed of a list of coordinates of the reconstructed atoms in the probed volume. The elemental identity of each atom is derived from time-of-flight mass spectrometry, with no local chemical information readily available. In this study, we use a data processing technique referred to as field evaporation energy loss spectroscopy (FEELS), which analyzes the tails of mass peaks. FEELS was used to extract critical energetic parameters that are related to the activation energy for atoms to escape from the surface under intense electrostatic field and dependent of the path followed by the departing atoms. We focused our study on pure face-centered cubic metals. We demonstrate that the energetic parameters can be mapped in two-dimensional with nanometric resolution. A dependence on the considered crystallographic planes is observed, with sets of planes of low Miller indices showing a lower sensitivity to the field. The temperature is also an important parameter in particular for aluminum, which we attribute to an energetic transition between two paths of field evaporation between 25 and 60 K close to (002) pole. This paper shows that the information that can be retrieved from the measured energy loss of surface atoms is important both experimentally and theoretically.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atom probe tomography data are composed of a list of coordinates of the reconstructed atoms in the probed volume. The elemental identity of each atom is derived from time-of-flight mass spectrometry, with no local chemical information readily available. In this study, we use a data processing technique referred to as field evaporation energy loss spectroscopy (FEELS), which analyzes the tails of mass peaks. FEELS was used to extract critical energetic parameters that are related to the activation energy for atoms to escape from the surface under intense electrostatic field and dependent of the path followed by the departing atoms. We focused our study on pure face-centered cubic metals. We demonstrate that the energetic parameters can be mapped in two-dimensional with nanometric resolution. A dependence on the considered crystallographic planes is observed, with sets of planes of low Miller indices showing a lower sensitivity to the field. The temperature is also an important parameter in particular for aluminum, which we attribute to an energetic transition between two paths of field evaporation between 25 and 60 K close to (002) pole. This paper shows that the information that can be retrieved from the measured energy loss of surface atoms is important both experimentally and theoretically.

利用场蒸发能量损失光谱图绘制金属中场蒸发能量势垒的晶体学依赖性。
原子探针层析成像数据由探测体积中重建原子的坐标列表组成。每个原子的元素标识都是通过飞行时间质谱法得出的,没有现成的本地化学信息。在这项研究中,我们使用了一种被称为场蒸发能量损失光谱(FEELS)的数据处理技术,它可以分析质量峰的尾部。FEELS 用于提取临界能量参数,这些参数与原子在强静电场下从表面逸出的活化能有关,并与原子逸出的路径有关。我们的研究重点是纯面心立方金属。我们证明,能量参数可以在二维范围内以纳米分辨率绘制。我们观察到了对所考虑的晶体平面的依赖性,低米勒指数的平面对场的敏感性较低。温度也是一个重要参数,特别是对铝而言,我们将其归因于靠近 (002) 极的 25 至 60 K 之间两种场蒸发路径之间的能量转换。本文表明,从测量到的表面原子能量损失中获取的信息在实验和理论上都非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信