Artificial Intelligence in Neovascular Age-Related Macular Degeneration.

IF 0.7 4区 医学 Q4 OPHTHALMOLOGY
Klinische Monatsblatter fur Augenheilkunde Pub Date : 2025-09-01 Epub Date: 2024-09-11 DOI:10.1055/a-2413-6782
Lorenzo Ferro Desideri, Martin Zinkernagel, Rodrigo Anguita
{"title":"Artificial Intelligence in Neovascular Age-Related Macular Degeneration.","authors":"Lorenzo Ferro Desideri, Martin Zinkernagel, Rodrigo Anguita","doi":"10.1055/a-2413-6782","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into the management of neovascular age-related macular degeneration (nAMD) presents a transformative opportunity in ophthalmology. In particular, deep learning (DL) models have shown remarkable accuracy in detecting nAMD, predicting disease progression and forecasting treatment outcomes. This review provides a comprehensive analysis of current AI applications in nAMD, focusing on the performance of these models in diagnostic tasks, including classification, object detection, and segmentation, as well as their potential to outperform human experts in specific domains. The review further explores how AI-driven predictive models can personalize treatment strategies by forecasting individual responses to therapies, such as anti-VEGF, and predicting the conversion from intermediate AMD to nAMD. Despite these promising developments, significant challenges remain, including the need for extensive datasets, seamless integration into clinical workflows, and ensuring the generalizability of AI predictions across diverse populations. Continued validation and the development of user-friendly AI tools are crucial for broader adoption and improved patient outcomes. In conclusion, identifying effective pathways to overcome these challenges will be essential as the field continues to evolve.</p>","PeriodicalId":17904,"journal":{"name":"Klinische Monatsblatter fur Augenheilkunde","volume":" ","pages":"894-900"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Klinische Monatsblatter fur Augenheilkunde","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2413-6782","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of artificial intelligence (AI) into the management of neovascular age-related macular degeneration (nAMD) presents a transformative opportunity in ophthalmology. In particular, deep learning (DL) models have shown remarkable accuracy in detecting nAMD, predicting disease progression and forecasting treatment outcomes. This review provides a comprehensive analysis of current AI applications in nAMD, focusing on the performance of these models in diagnostic tasks, including classification, object detection, and segmentation, as well as their potential to outperform human experts in specific domains. The review further explores how AI-driven predictive models can personalize treatment strategies by forecasting individual responses to therapies, such as anti-VEGF, and predicting the conversion from intermediate AMD to nAMD. Despite these promising developments, significant challenges remain, including the need for extensive datasets, seamless integration into clinical workflows, and ensuring the generalizability of AI predictions across diverse populations. Continued validation and the development of user-friendly AI tools are crucial for broader adoption and improved patient outcomes. In conclusion, identifying effective pathways to overcome these challenges will be essential as the field continues to evolve.

人工智能在新生血管性老年黄斑变性中的应用。
人工智能(AI)整合到新生血管性年龄相关性黄斑变性(nAMD)的管理中,为眼科提供了一个变革的机会。特别是,深度学习(DL)模型在检测nAMD、预测疾病进展和预测治疗结果方面显示出显著的准确性。这篇综述全面分析了当前人工智能在nAMD中的应用,重点关注这些模型在诊断任务中的表现,包括分类、目标检测和分割,以及它们在特定领域超越人类专家的潜力。这篇综述进一步探讨了人工智能驱动的预测模型如何通过预测个体对治疗的反应(如抗vegf)和预测从中度AMD到nAMD的转化来个性化治疗策略。尽管有这些有希望的发展,但仍然存在重大挑战,包括需要广泛的数据集,无缝集成到临床工作流程中,以及确保人工智能预测在不同人群中的普遍性。持续验证和开发用户友好的人工智能工具对于广泛采用和改善患者预后至关重要。总之,随着该领域的不断发展,确定克服这些挑战的有效途径至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
235
审稿时长
4-8 weeks
期刊介绍: -Konzentriertes Fachwissen aus Klinik und Praxis: Die entscheidenden Ergebnisse der internationalen Forschung - für Sie auf den Punkt gebracht und kritisch kommentiert, Übersichtsarbeiten zu den maßgeblichen Themen der täglichen Praxis, Top informiert - breite klinische Berichterstattung. -CME-Punkte sammeln mit dem Refresher: Effiziente, CME-zertifizierte Fortbildung, mit dem Refresher, 3 CME-Punkte pro Ausgabe - bis zu 36 CME-Punkte im Jahr!. -Aktuelle Rubriken mit echtem Nutzwert: Kurzreferate zu den wichtigsten Artikeln internationaler Zeitschriften, Schwerpunktthema in jedem Heft: Ausführliche Übersichtsarbeiten zu den wichtigsten Themen der Ophthalmologie – so behalten Sie das gesamte Fach im Blick!, Originalien mit den neuesten Entwicklungen, Übersichten zu den relevanten Themen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信