Qingqing Zhu , Xinyi Lu , Ting Zhang , Mengsha Shi , Rongrong Gao , Yanli Zhou , Haifeng Zhang , Wenming Yao , Changyong Qi , Shengen Liao , Xinli Li
{"title":"Resistant starch confers protection of dietary against diabetic cardiomyopathy","authors":"Qingqing Zhu , Xinyi Lu , Ting Zhang , Mengsha Shi , Rongrong Gao , Yanli Zhou , Haifeng Zhang , Wenming Yao , Changyong Qi , Shengen Liao , Xinli Li","doi":"10.1016/j.jnutbio.2024.109766","DOIUrl":null,"url":null,"abstract":"<div><div>Long-term dysfunction of glucose metabolism causes cardiac dysfunction called diabetic cardiomyopathy (DCM). To investigate the effect and underlying mechanism of RS on the process of DCM, mouse models induced by a high-fat diet (HFD) and streptozotocin (STZ) were fed RS (2 g/kg/day) and vehicle treatment (by oral gavage) for 14 weeks. Various analyses, including qRT-PCR, western blot, immunofluorescence staining, histology staining, cardiac function, and diversity detection of intestinal microbiota were performed. RS intervention could directly improve myocardial fibrosis, hypertrophy, apoptosis, and cardiac insufficiency in DCM. These beneficial effects may be achieved by elevating the expression of IGF-1, activating the ERK phosphorylation. Furthermore, by carrying out nano LC-MS/MS analyses and 16S rDNA sequencing, we found RS might primarily affect proteins in the cytoplasm involved in post-translational modification, protein conversion, and signal transduction mechanisms. RS altered intestinal microbiota and improved intestinal mucosal permeability towards a favorable direction in DCM. This multidimensional assessment of RS suggests that might be a promising approach towards the treatment of DCM.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"134 ","pages":"Article 109766"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001979","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term dysfunction of glucose metabolism causes cardiac dysfunction called diabetic cardiomyopathy (DCM). To investigate the effect and underlying mechanism of RS on the process of DCM, mouse models induced by a high-fat diet (HFD) and streptozotocin (STZ) were fed RS (2 g/kg/day) and vehicle treatment (by oral gavage) for 14 weeks. Various analyses, including qRT-PCR, western blot, immunofluorescence staining, histology staining, cardiac function, and diversity detection of intestinal microbiota were performed. RS intervention could directly improve myocardial fibrosis, hypertrophy, apoptosis, and cardiac insufficiency in DCM. These beneficial effects may be achieved by elevating the expression of IGF-1, activating the ERK phosphorylation. Furthermore, by carrying out nano LC-MS/MS analyses and 16S rDNA sequencing, we found RS might primarily affect proteins in the cytoplasm involved in post-translational modification, protein conversion, and signal transduction mechanisms. RS altered intestinal microbiota and improved intestinal mucosal permeability towards a favorable direction in DCM. This multidimensional assessment of RS suggests that might be a promising approach towards the treatment of DCM.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.