Soo-Jeong Lee, Jihye Yang, Gi Beom Keum, Jinok Kwak, Hyunok Doo, Sungwoo Choi, Dong-Geun Park, Chul-Hong Kim, Hyeun Bum Kim, Ju-Hoon Lee
{"title":"Therapeutic Potential of <i>Lactiplantibacillus plantarum</i> FB091 in Alleviating Alcohol-Induced Liver Disease through Gut-Liver Axis.","authors":"Soo-Jeong Lee, Jihye Yang, Gi Beom Keum, Jinok Kwak, Hyunok Doo, Sungwoo Choi, Dong-Geun Park, Chul-Hong Kim, Hyeun Bum Kim, Ju-Hoon Lee","doi":"10.4014/jmb.2407.07051","DOIUrl":null,"url":null,"abstract":"<p><p>Alcoholic liver disease (ALD) poses a significant global health burden, often requiring liver transplantation and resulting in fatalities. Current treatments, like corticosteroids, effectively reduce inflammation but carry significant immunosuppressive risks. This study evaluates <i>Lactiplantibacillus plantarum</i> FB091, a newly isolated probiotic strain, as a safer alternative for ALD treatment. Using an in vivo mouse model, we assessed the effects of <i>L. plantarum</i> FB091 on alcohol-induced liver damage and gut microbiota composition. Alcohol and probiotics administration did not significantly impact water/feed intake or body weight. Histopathological analysis showed that <i>L. plantarum</i> FB091 reduced hepatocellular ballooning and inflammatory cell infiltration in liver tissues and mitigated structural damage in colon tissues, demonstrating protective effects against alcohol-induced damage. Biomarker analysis indicated that <i>L. plantarum</i> FB091 decreased aspartate aminotransferase levels, suggesting reduced liver damage, and increased alcohol dehydrogenase activity, indicating enhanced alcohol metabolism. Additionally, cytokine assays revealed a reduction in pro-inflammatory TNF-α and an increase in anti-inflammatory IL-10 levels in colon tissues of the <i>L. plantarum</i> FB091 group, suggesting an anti-inflammatory effect. Gut microbiota analysis showed changes in the <i>L. plantarum</i> FB091 group, including a reduction in Cyanobacteria and an increase in beneficial bacteria such as <i>Akkermansia</i> and <i>Lactobacillus</i>. These changes correlated with the recovery and protection of liver and colon health. Overall, <i>L. plantarum</i> FB091 shows potential as a therapeutic probiotic for managing ALD through its protective effects on liver and colon tissues, enhancement of alcohol metabolism, and beneficial modulation of gut microbiota. Further clinical studies are warranted to confirm these findings in humans.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2407.07051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alcoholic liver disease (ALD) poses a significant global health burden, often requiring liver transplantation and resulting in fatalities. Current treatments, like corticosteroids, effectively reduce inflammation but carry significant immunosuppressive risks. This study evaluates Lactiplantibacillus plantarum FB091, a newly isolated probiotic strain, as a safer alternative for ALD treatment. Using an in vivo mouse model, we assessed the effects of L. plantarum FB091 on alcohol-induced liver damage and gut microbiota composition. Alcohol and probiotics administration did not significantly impact water/feed intake or body weight. Histopathological analysis showed that L. plantarum FB091 reduced hepatocellular ballooning and inflammatory cell infiltration in liver tissues and mitigated structural damage in colon tissues, demonstrating protective effects against alcohol-induced damage. Biomarker analysis indicated that L. plantarum FB091 decreased aspartate aminotransferase levels, suggesting reduced liver damage, and increased alcohol dehydrogenase activity, indicating enhanced alcohol metabolism. Additionally, cytokine assays revealed a reduction in pro-inflammatory TNF-α and an increase in anti-inflammatory IL-10 levels in colon tissues of the L. plantarum FB091 group, suggesting an anti-inflammatory effect. Gut microbiota analysis showed changes in the L. plantarum FB091 group, including a reduction in Cyanobacteria and an increase in beneficial bacteria such as Akkermansia and Lactobacillus. These changes correlated with the recovery and protection of liver and colon health. Overall, L. plantarum FB091 shows potential as a therapeutic probiotic for managing ALD through its protective effects on liver and colon tissues, enhancement of alcohol metabolism, and beneficial modulation of gut microbiota. Further clinical studies are warranted to confirm these findings in humans.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.