Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rima Koka, Laura M Wake, Nam K Ku, Kathryn Rice, Autumn LaRocque, Elba G Vidal, Serge Alexanian, Raymond Kozikowski, Yair Rivenson, Michael Edward Kallen
{"title":"Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report.","authors":"Rima Koka, Laura M Wake, Nam K Ku, Kathryn Rice, Autumn LaRocque, Elba G Vidal, Serge Alexanian, Raymond Kozikowski, Yair Rivenson, Michael Edward Kallen","doi":"10.1136/jcp-2024-209643","DOIUrl":null,"url":null,"abstract":"<p><p>Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine and cause delays in patient diagnosis and treatment. Recent AI-based techniques offer promise in upending histology workflow; one such method developed by PictorLabs can generate near-instantaneous diagnostic images via a machine learning algorithm. Here, we demonstrate the utility of virtual staining in a blinded, wash-out controlled study of 16 cases of lymph node excisional biopsies, including a spectrum of diagnoses from reactive to lymphoma and compare the diagnostic performance of virtual and chemical H&Es across a range of stain quality, image quality, morphometric assessment and diagnostic interpretation parameters as well as proposed follow-up immunostains. Our results show non-inferior performance of virtual H&E stains across all parameters, including an improved stain quality pass rate (92% vs 79% for virtual vs chemical stains, respectively) and an equivalent rate of binary diagnostic concordance (90% vs 92%). More detailed adjudicated reviews of differential diagnoses and proposed IHC panels showed no major discordances. Virtual H&Es appear fit for purpose and non-inferior to chemical H&Es in diagnostic assessment of clinical lymph node samples, in a limited pilot study.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jcp-2024-209643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine and cause delays in patient diagnosis and treatment. Recent AI-based techniques offer promise in upending histology workflow; one such method developed by PictorLabs can generate near-instantaneous diagnostic images via a machine learning algorithm. Here, we demonstrate the utility of virtual staining in a blinded, wash-out controlled study of 16 cases of lymph node excisional biopsies, including a spectrum of diagnoses from reactive to lymphoma and compare the diagnostic performance of virtual and chemical H&Es across a range of stain quality, image quality, morphometric assessment and diagnostic interpretation parameters as well as proposed follow-up immunostains. Our results show non-inferior performance of virtual H&E stains across all parameters, including an improved stain quality pass rate (92% vs 79% for virtual vs chemical stains, respectively) and an equivalent rate of binary diagnostic concordance (90% vs 92%). More detailed adjudicated reviews of differential diagnoses and proposed IHC panels showed no major discordances. Virtual H&Es appear fit for purpose and non-inferior to chemical H&Es in diagnostic assessment of clinical lymph node samples, in a limited pilot study.

基于人工智能的计算 H&E 染色法与化学 H&E 染色法在淋巴瘤初诊中的对比评估:简要中期报告。
组织切片的显微镜检查在病理学中具有基础性的重要意义,然而传统的基于化学的组织学实验室方法劳动强度大、对组织有破坏性、可扩展性差,无法满足精准医学不断发展的需求,而且会延误患者的诊断和治疗。最近,基于人工智能的技术有望颠覆组织学工作流程;PictorLabs 开发的一种方法可以通过机器学习算法生成近乎即时的诊断图像。在这里,我们在一项针对 16 例淋巴结切除活检病例(包括从反应性淋巴瘤到淋巴瘤的一系列诊断)的盲法冲洗对照研究中展示了虚拟染色的实用性,并比较了虚拟和化学 H&E 在一系列染色质量、图像质量、形态评估和诊断解释参数以及建议的后续免疫印迹方面的诊断性能。我们的结果表明,虚拟 H&E 染色在所有参数上的表现都不逊色,包括染色质量合格率的提高(虚拟染色与化学染色的合格率分别为 92% 与 79%)和二元诊断一致性的提高(90% 与 92%)。对鉴别诊断和建议的 IHC 面板进行更详细的裁定审查后发现,没有重大不一致之处。在一项有限的试点研究中,虚拟 H&E 似乎适合用于临床淋巴结样本的诊断评估,而且不逊于化学 H&E。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信