Theory of high-temperature superfluorescence in hybrid perovskite thin films.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
B D Fainberg, V Al Osipov
{"title":"Theory of high-temperature superfluorescence in hybrid perovskite thin films.","authors":"B D Fainberg, V Al Osipov","doi":"10.1063/5.0226221","DOIUrl":null,"url":null,"abstract":"<p><p>The recent discovery of high-temperature superfluorescence in hybrid perovskite thin films has opened new possibilities for harnessing macroscopic quantum phenomena in nanotechnology. This study aimed to elucidate the mechanism that enables high-temperature superfluorescence in these systems. The proposed model describes a quasi-2D Wannier exciton in a thin film that interacts with phonons via the longitudinal optical phonon-exciton Fröhlich interaction. We show that the super-radiant properties of the coherent state in hybrid perovskites are stable against perturbations caused by the longitudinal optical phonon-exciton Fröhlich interaction. Using the multiconfiguration Hartree approach, we derive semiclassical equations of motion for a single-exciton wavefunction, where the vibrational degrees of freedom interact with the Wannier exciton through a mean-field Hartree term. Super-radiance is effectively described by a non-Hermitian term in the Hamiltonian. The analysis was then extended to multiple excited states using the semiclassical Hamiltonian as the basic model. We demonstrate that the ground state of the model exciton Hamiltonian with long-range interactions is a symmetric Dicke super-radiant state, where the Fröhlich interaction is nullified. The additional density matrix-based consideration draws an analogy between this system and stable systems, where the conservation laws determine the nullification of the constant (momentum-independent) decay rate part. In the exciton-phonon system, nullification is associated with the absence of a momentum-independent component in the Wannier exciton-phonon interaction coupling function.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226221","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The recent discovery of high-temperature superfluorescence in hybrid perovskite thin films has opened new possibilities for harnessing macroscopic quantum phenomena in nanotechnology. This study aimed to elucidate the mechanism that enables high-temperature superfluorescence in these systems. The proposed model describes a quasi-2D Wannier exciton in a thin film that interacts with phonons via the longitudinal optical phonon-exciton Fröhlich interaction. We show that the super-radiant properties of the coherent state in hybrid perovskites are stable against perturbations caused by the longitudinal optical phonon-exciton Fröhlich interaction. Using the multiconfiguration Hartree approach, we derive semiclassical equations of motion for a single-exciton wavefunction, where the vibrational degrees of freedom interact with the Wannier exciton through a mean-field Hartree term. Super-radiance is effectively described by a non-Hermitian term in the Hamiltonian. The analysis was then extended to multiple excited states using the semiclassical Hamiltonian as the basic model. We demonstrate that the ground state of the model exciton Hamiltonian with long-range interactions is a symmetric Dicke super-radiant state, where the Fröhlich interaction is nullified. The additional density matrix-based consideration draws an analogy between this system and stable systems, where the conservation laws determine the nullification of the constant (momentum-independent) decay rate part. In the exciton-phonon system, nullification is associated with the absence of a momentum-independent component in the Wannier exciton-phonon interaction coupling function.

混合包晶体薄膜的高温超荧光理论。
最近在混合包晶体薄膜中发现的高温超荧光为在纳米技术中利用宏观量子现象提供了新的可能性。本研究旨在阐明这些系统中产生高温超荧光的机制。所提出的模型描述了薄膜中的准二维万尼尔激子,该激子通过纵向光学声子-激子弗洛里希相互作用与声子相互作用。我们的研究表明,混合包晶中相干态的超辐射特性在纵向光学声子-外激子弗洛里希相互作用的扰动下是稳定的。利用多配置哈特里方法,我们推导出了单激子波函数的半经典运动方程,其中振动自由度通过平均场哈特里项与万尼尔激子相互作用。超辐射由哈密顿中的非赫米提项有效描述。然后,以半经典哈密顿为基本模型,将分析扩展到多重激发态。我们证明,具有长程相互作用的模型激子哈密顿的基态是一个对称的迪克超辐射态,其中弗洛里希相互作用无效。基于密度矩阵的额外考虑将该系统与稳定系统进行了类比,在稳定系统中,守恒定律决定了恒定(与动量无关)衰变率部分的无效化。在激子-声子系统中,无效化与万尼尔激子-声子相互作用耦合函数中不存在与动量无关的分量有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信