Shuo Wang MD , Paul Kim MD , Haonan Wang PhD , Ming-Yen Ng BMBS , Andrew E. Arai MD , Amita Singh MD , Saima Mushtaq MD , Tsun Hei Sin BSc , Yuko Tada MD, PhD , Elizabeth Hillier MD, PhD , Ruyun Jin MD, MCR , Christian Østergaard Mariager PhD , Michael Salerno MD, PhD , Gianluca Pontone MD , Javier Urmeneta Ulloa PhD , Ibrahim M. Saeed MD , Hena Patel MD , Victor Goh MBBS , Simon Madsen MD , Won Yong Kim MD , Amit R. Patel MD
{"title":"Myocardial Blood Flow Quantification Using Stress Cardiac Magnetic Resonance Improves Detection of Coronary Artery Disease","authors":"Shuo Wang MD , Paul Kim MD , Haonan Wang PhD , Ming-Yen Ng BMBS , Andrew E. Arai MD , Amita Singh MD , Saima Mushtaq MD , Tsun Hei Sin BSc , Yuko Tada MD, PhD , Elizabeth Hillier MD, PhD , Ruyun Jin MD, MCR , Christian Østergaard Mariager PhD , Michael Salerno MD, PhD , Gianluca Pontone MD , Javier Urmeneta Ulloa PhD , Ibrahim M. Saeed MD , Hena Patel MD , Victor Goh MBBS , Simon Madsen MD , Won Yong Kim MD , Amit R. Patel MD","doi":"10.1016/j.jcmg.2024.07.023","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) using stress cardiovascular magnetic resonance (CMR) have been shown to identify epicardial coronary artery disease. However, comparative analysis between quantitative perfusion and conventional qualitative assessment (QA) remains limited.</div></div><div><h3>Objectives</h3><div>The aim of this multicenter study was to test the hypothesis that quantitative stress MBF (sMBF) and MPR analysis can identify obstructive coronary artery disease (obCAD) with comparable performance as QA of stress CMR performed by experienced physicians in interpretation.</div></div><div><h3>Methods</h3><div>The analysis included 127 individuals (mean age 62 ± 16 years, 84 men [67%]) who underwent stress CMR. obCAD was defined as the presence of stenosis ≥50% in the left main coronary artery or ≥70% in a major vessel. Each patient, coronary territory, and myocardial segment was categorized as having either obCAD or no obCAD (noCAD). Global, per coronary territory, and segmental MBF and MPR values were calculated. QA was performed by 4 CMR experts.</div></div><div><h3>Results</h3><div>At the patient level, global sMBF and MPR were significantly lower in subjects with obCAD than in those with noCAD, with median values of sMBF of 1.5 mL/g/min (Q1-Q3: 1.2-1.8 mL/g/min) vs 2.4 mL/g/min (Q1-Q3: 2.1-2.7 mL/g/min) (<em>P <</em> 0.001) and median values of MPR of 1.3 (Q1-Q3: 1.0-1.6) vs 2.1 (Q1-Q3: 1.6-2.7) (<em>P <</em> 0.001). At the coronary artery level, sMBF and MPR were also significantly lower in vessels with obCAD compared with those with noCAD. Global sMBF and MPR had areas under the curve (AUCs) of 0.90 (95% CI: 0.84-0.96) and 0.86 (95% CI: 0.80-0.93). The AUCs for QA by 4 physicians ranged between 0.69 and 0.88. The AUC for global sMBF and MPR was significantly better than the average AUC for QA.</div></div><div><h3>Conclusions</h3><div>This study demonstrates that sMBF and MPR using dual-sequence stress CMR can identify obCAD more accurately than qualitative analysis by experienced CMR readers.</div></div>","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"17 12","pages":"Pages 1428-1441"},"PeriodicalIF":12.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC. Cardiovascular imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936878X24003139","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) using stress cardiovascular magnetic resonance (CMR) have been shown to identify epicardial coronary artery disease. However, comparative analysis between quantitative perfusion and conventional qualitative assessment (QA) remains limited.
Objectives
The aim of this multicenter study was to test the hypothesis that quantitative stress MBF (sMBF) and MPR analysis can identify obstructive coronary artery disease (obCAD) with comparable performance as QA of stress CMR performed by experienced physicians in interpretation.
Methods
The analysis included 127 individuals (mean age 62 ± 16 years, 84 men [67%]) who underwent stress CMR. obCAD was defined as the presence of stenosis ≥50% in the left main coronary artery or ≥70% in a major vessel. Each patient, coronary territory, and myocardial segment was categorized as having either obCAD or no obCAD (noCAD). Global, per coronary territory, and segmental MBF and MPR values were calculated. QA was performed by 4 CMR experts.
Results
At the patient level, global sMBF and MPR were significantly lower in subjects with obCAD than in those with noCAD, with median values of sMBF of 1.5 mL/g/min (Q1-Q3: 1.2-1.8 mL/g/min) vs 2.4 mL/g/min (Q1-Q3: 2.1-2.7 mL/g/min) (P < 0.001) and median values of MPR of 1.3 (Q1-Q3: 1.0-1.6) vs 2.1 (Q1-Q3: 1.6-2.7) (P < 0.001). At the coronary artery level, sMBF and MPR were also significantly lower in vessels with obCAD compared with those with noCAD. Global sMBF and MPR had areas under the curve (AUCs) of 0.90 (95% CI: 0.84-0.96) and 0.86 (95% CI: 0.80-0.93). The AUCs for QA by 4 physicians ranged between 0.69 and 0.88. The AUC for global sMBF and MPR was significantly better than the average AUC for QA.
Conclusions
This study demonstrates that sMBF and MPR using dual-sequence stress CMR can identify obCAD more accurately than qualitative analysis by experienced CMR readers.
期刊介绍:
JACC: Cardiovascular Imaging, part of the prestigious Journal of the American College of Cardiology (JACC) family, offers readers a comprehensive perspective on all aspects of cardiovascular imaging. This specialist journal covers original clinical research on both non-invasive and invasive imaging techniques, including echocardiography, CT, CMR, nuclear, optical imaging, and cine-angiography.
JACC. Cardiovascular imaging highlights advances in basic science and molecular imaging that are expected to significantly impact clinical practice in the next decade. This influence encompasses improvements in diagnostic performance, enhanced understanding of the pathogenetic basis of diseases, and advancements in therapy.
In addition to cutting-edge research,the content of JACC: Cardiovascular Imaging emphasizes practical aspects for the practicing cardiologist, including advocacy and practice management.The journal also features state-of-the-art reviews, ensuring a well-rounded and insightful resource for professionals in the field of cardiovascular imaging.