Prediction of Arteriovenous Access Dysfunction by Mel Spectrogram-based Deep Learning Model.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI:10.7150/ijms.98421
Tung-Ling Chung, Yi-Hsueh Liu, Pei-Yu Wu, Jiun-Chi Huang, Yi-Chun Tsai, Yu-Chen Wang, Shan-Pin Pan, Ya-Ling Hsu, Szu-Chia Chen
{"title":"Prediction of Arteriovenous Access Dysfunction by Mel Spectrogram-based Deep Learning Model.","authors":"Tung-Ling Chung, Yi-Hsueh Liu, Pei-Yu Wu, Jiun-Chi Huang, Yi-Chun Tsai, Yu-Chen Wang, Shan-Pin Pan, Ya-Ling Hsu, Szu-Chia Chen","doi":"10.7150/ijms.98421","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The early detection of arteriovenous (AV) access dysfunction is crucial for maintaining the patency of vascular access. This study aimed to use deep learning to predict AV access malfunction necessitating further vascular management. <b>Methods:</b> This prospective cohort study enrolled prevalent hemodialysis (HD) patients with an AV fistula or AV graft from a single HD center. Their AV access bruit sounds were recorded weekly using an electronic stethoscope from three different sites (arterial needle site, venous needle site, and the midpoint between the arterial and venous needle sites) before HD sessions. The audio signals were converted to Mel spectrograms using Fourier transformation and utilized to develop deep learning models. Three deep learning models, (1) Convolutional Neural Network (CNN), (2) Convolutional Recurrent Neural Network (CRNN), and (3) Vision Transformers-Gate Recurrent Unit (ViT-GRU), were trained and compared to predict the likelihood of dysfunctional AV access. <b>Results</b>: Total 437 audio recordings were obtained from 84 patients. The CNN model outperformed the other models in the test set, with an F1 score of 0.7037 and area under the receiver operating characteristic curve (AUROC) of 0.7112. The Vit-GRU model had high performance in out-of-fold predictions, with an F1 score of 0.7131 and AUROC of 0.7745, but low generalization ability in the test set, with an F1 score of 0.5225 and AUROC of 0.5977. <b>Conclusions:</b> The CNN model based on Mel spectrograms could predict malfunctioning AV access requiring vascular intervention within 10 days. This approach could serve as a useful screening tool for high-risk AV access.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/ijms.98421","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The early detection of arteriovenous (AV) access dysfunction is crucial for maintaining the patency of vascular access. This study aimed to use deep learning to predict AV access malfunction necessitating further vascular management. Methods: This prospective cohort study enrolled prevalent hemodialysis (HD) patients with an AV fistula or AV graft from a single HD center. Their AV access bruit sounds were recorded weekly using an electronic stethoscope from three different sites (arterial needle site, venous needle site, and the midpoint between the arterial and venous needle sites) before HD sessions. The audio signals were converted to Mel spectrograms using Fourier transformation and utilized to develop deep learning models. Three deep learning models, (1) Convolutional Neural Network (CNN), (2) Convolutional Recurrent Neural Network (CRNN), and (3) Vision Transformers-Gate Recurrent Unit (ViT-GRU), were trained and compared to predict the likelihood of dysfunctional AV access. Results: Total 437 audio recordings were obtained from 84 patients. The CNN model outperformed the other models in the test set, with an F1 score of 0.7037 and area under the receiver operating characteristic curve (AUROC) of 0.7112. The Vit-GRU model had high performance in out-of-fold predictions, with an F1 score of 0.7131 and AUROC of 0.7745, but low generalization ability in the test set, with an F1 score of 0.5225 and AUROC of 0.5977. Conclusions: The CNN model based on Mel spectrograms could predict malfunctioning AV access requiring vascular intervention within 10 days. This approach could serve as a useful screening tool for high-risk AV access.

通过基于 Mel Spectrogram 的深度学习模型预测动静脉通路功能障碍。
背景:早期发现动静脉(AV)通路功能障碍对于保持血管通路的通畅至关重要。本研究旨在利用深度学习预测需要进一步血管管理的动静脉通路故障。方法:这项前瞻性队列研究从一个血液透析中心招募了患有动静脉瘘或动静脉移植的血液透析(HD)患者。在进行血液透析治疗前,使用电子听诊器每周从三个不同部位(动脉针部位、静脉针部位以及动脉针和静脉针部位之间的中点)记录他们的房室通路搏动声。音频信号通过傅立叶变换转换成梅尔频谱图,并用于开发深度学习模型。对三种深度学习模型(1)卷积神经网络(CNN)、(2)卷积递归神经网络(CRNN)和(3)视觉变换器-栅极递归单元(ViT-GRU))进行了训练和比较,以预测房室通路功能障碍的可能性。结果共获得 84 名患者的 437 条音频记录。CNN 模型在测试集中的表现优于其他模型,F1 得分为 0.7037,接收者工作特征曲线下面积(AUROC)为 0.7112。Vit-GRU 模型在折外预测中表现优异,F1 得分为 0.7131,AUROC 为 0.7745,但在测试集中的泛化能力较低,F1 得分为 0.5225,AUROC 为 0.5977。结论基于梅尔频谱图的 CNN 模型可以预测需要在 10 天内进行血管介入治疗的房室通路故障。这种方法可作为筛查高风险动静脉通路的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信