{"title":"Optimal Positive End-expiratory Pressure Levels in Tuberculosis-associated Acute Respiratory Distress Syndrome.","authors":"Seyed MohammadReza Hashemian, Batoul Khoundabi, Ashkan Bahrami, Hamidreza Jamaati, Mohammad Varahram, Leila Saljoughi, Payam Rahimi, Reza Eshraghi","doi":"10.4103/ijmy.ijmy_136_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The objective is to assess lung compliance and identify the optimal positive end-expiratory pressure (PEEP) levels in patients with tuberculosis-associated Acute Respiratory Distress Syndrome (TB-ARDS) compared to non-TB-ARDS patients.</p><p><strong>Methods: </strong>This observational case-control study utilized electrical impedance tomography to evaluate lung mechanics in 20 TB-ARDS and 20 non-TB-ARDS patients. Participants underwent PEEP titration from 23 to 5 cm H2O in 2 cm H2O decrements. Lung compliance and the rates of hyperdistention and collapse were assessed at each PEEP level.</p><p><strong>Results: </strong>Delta impedance values showed higher amounts in a PEEP range of 11-17 cm H2O and in patients with TB-ARDS (P > 0.05). In addition, both hyperdistention and collapse rates were nonsignificantly higher in TB-ARDS patients (P > 0.05), and the compromised levels of hyperdistention and collapse rates were at 15-17 cm H2O, indicating the most favorable PEEP level.</p><p><strong>Conclusions: </strong>The observed patterns of hyperdistention and collapse rates across various PEEP levels provide valuable insights into the susceptibility of TB-ARDS patients to barotrauma. Notably, the identified optimal PEEP range between 15 and 17 cm H2O may guide ventilator management strategies in mitigating both hyperdistention and collapse; nonetheless, due to the high variability of lung compliances within groups, we strongly recommend individualized consideration for tailored respiratory support and evaluation.</p>","PeriodicalId":14133,"journal":{"name":"International Journal of Mycobacteriology","volume":"13 3","pages":"247-251"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mycobacteriology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ijmy.ijmy_136_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The objective is to assess lung compliance and identify the optimal positive end-expiratory pressure (PEEP) levels in patients with tuberculosis-associated Acute Respiratory Distress Syndrome (TB-ARDS) compared to non-TB-ARDS patients.
Methods: This observational case-control study utilized electrical impedance tomography to evaluate lung mechanics in 20 TB-ARDS and 20 non-TB-ARDS patients. Participants underwent PEEP titration from 23 to 5 cm H2O in 2 cm H2O decrements. Lung compliance and the rates of hyperdistention and collapse were assessed at each PEEP level.
Results: Delta impedance values showed higher amounts in a PEEP range of 11-17 cm H2O and in patients with TB-ARDS (P > 0.05). In addition, both hyperdistention and collapse rates were nonsignificantly higher in TB-ARDS patients (P > 0.05), and the compromised levels of hyperdistention and collapse rates were at 15-17 cm H2O, indicating the most favorable PEEP level.
Conclusions: The observed patterns of hyperdistention and collapse rates across various PEEP levels provide valuable insights into the susceptibility of TB-ARDS patients to barotrauma. Notably, the identified optimal PEEP range between 15 and 17 cm H2O may guide ventilator management strategies in mitigating both hyperdistention and collapse; nonetheless, due to the high variability of lung compliances within groups, we strongly recommend individualized consideration for tailored respiratory support and evaluation.