Establishment, characterization, and sensory characteristics (taste and flavor) of an immortalized muscle cell line from the seven-band grouper Epinephelus septemfasciatus: implications for cultured seafood applications.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Sathish Krishnan, Selvakumari Ulagesan, Ji-Sung Moon, Youn-Hee Choi, Taek-Jeong Nam
{"title":"Establishment, characterization, and sensory characteristics (taste and flavor) of an immortalized muscle cell line from the seven-band grouper Epinephelus septemfasciatus: implications for cultured seafood applications.","authors":"Sathish Krishnan, Selvakumari Ulagesan, Ji-Sung Moon, Youn-Hee Choi, Taek-Jeong Nam","doi":"10.1007/s11626-024-00971-7","DOIUrl":null,"url":null,"abstract":"<p><p>Grouper muscle satellite cells (GMSCs) from the seven-band grouper (Epinephelus septemfasciatus) were isolated, and their growth conditions were optimized (10% fetal bovine serum, 24°C, 10 ng/mL bFGF). The cells were immortalized at passage 14 and designated as grouper immortalized muscle satellite cells (GIMSCs). DNA barcoding confirmed the grouper origin of both GMSC and GIMSC lines. GIMSCs exhibited enhanced proliferation, accelerated differentiation, and robust myotube formation compared to pre-crisis GMSCs. Western blot analysis showed upregulation of key myogenic factors (Pax7, MyoD, MyoG) and structural proteins (Desmin) in GIMSC, indicating the differentiation potential. The immortalized GIMSC line maintained consistent morphology, growth rates, and viability across multiple passages. Biocompatibility studies showed GIMSCs were compatible with bio-inks (sodium alginate, gelatin, κ-carrageenan) at 250 to 10,000 µg/mL, retaining ~ 80% viability at the highest concentration. Taste sensory analysis revealed GMSCs had the highest umami and lowest saltiness and sourness, contrasting with the muscle of the seven-band grouper, which had higher saltiness and sourness. Flavor analysis identified pronounced fishy, hot fat, and ethereal flavors in the cells at higher level than in the muscle. These findings suggest GMSCs and GIMSCs are promising for producing cultured meat with enhanced umami taste and flavors, advancing cellular agriculture and sustainable food production.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00971-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Grouper muscle satellite cells (GMSCs) from the seven-band grouper (Epinephelus septemfasciatus) were isolated, and their growth conditions were optimized (10% fetal bovine serum, 24°C, 10 ng/mL bFGF). The cells were immortalized at passage 14 and designated as grouper immortalized muscle satellite cells (GIMSCs). DNA barcoding confirmed the grouper origin of both GMSC and GIMSC lines. GIMSCs exhibited enhanced proliferation, accelerated differentiation, and robust myotube formation compared to pre-crisis GMSCs. Western blot analysis showed upregulation of key myogenic factors (Pax7, MyoD, MyoG) and structural proteins (Desmin) in GIMSC, indicating the differentiation potential. The immortalized GIMSC line maintained consistent morphology, growth rates, and viability across multiple passages. Biocompatibility studies showed GIMSCs were compatible with bio-inks (sodium alginate, gelatin, κ-carrageenan) at 250 to 10,000 µg/mL, retaining ~ 80% viability at the highest concentration. Taste sensory analysis revealed GMSCs had the highest umami and lowest saltiness and sourness, contrasting with the muscle of the seven-band grouper, which had higher saltiness and sourness. Flavor analysis identified pronounced fishy, hot fat, and ethereal flavors in the cells at higher level than in the muscle. These findings suggest GMSCs and GIMSCs are promising for producing cultured meat with enhanced umami taste and flavors, advancing cellular agriculture and sustainable food production.

七带石斑鱼(Epinephelus septemfasciatus)永生肌肉细胞系的建立、表征和感官特征(口感和风味):对养殖海产品应用的影响。
从七带石斑鱼(Epinephelus septemfasciatus)中分离出石斑鱼肌肉卫星细胞(GMSCs),并优化了其生长条件(10%胎牛血清、24°C、10 ng/mL bFGF)。这些细胞在生长到第 14 个阶段时被永生化,并被命名为石斑鱼永生化肌肉卫星细胞(GIMSCs)。DNA 条形码证实了 GMSC 和 GIMSC 两个品系都来自石斑鱼。与危机前的 GMSCs 相比,GIMSCs 表现出增殖增强、分化加速和肌管形成稳健。Western 印迹分析表明,GIMSC 中的关键成肌因子(Pax7、MyoD、MyoG)和结构蛋白(Desmin)上调,表明其具有分化潜力。永生化的 GIMSC 株系在多次传代过程中保持了一致的形态、生长速度和活力。生物相容性研究表明,GIMSCs 与生物链接(海藻酸钠、明胶、κ-卡拉胶)的相容性在 250 至 10,000 µg/mL 之间,在最高浓度下可保持约 80% 的存活率。味觉分析表明,GMSCs 的鲜味最高,咸味和酸味最低,与七带石斑鱼的肌肉形成鲜明对比,后者的咸味和酸味更高。风味分析发现,细胞中明显的腥味、热脂肪味和空灵味的含量高于肌肉。这些研究结果表明,GMSCs 和 GIMSCs 有望生产出具有更佳鲜味和风味的养殖肉类,推动细胞农业和可持续食品生产的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信