Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level

IF 3 2区 工程技术 Q1 ACOUSTICS
Jinhee Yoo;Joongho Ahn;Honghyeon Ha;John Claud Jonas;Chulhong Kim;Hyung Ham Kim
{"title":"Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level","authors":"Jinhee Yoo;Joongho Ahn;Honghyeon Ha;John Claud Jonas;Chulhong Kim;Hyung Ham Kim","doi":"10.1109/TUFFC.2024.3456083","DOIUrl":null,"url":null,"abstract":"Acoustic tweezers have attracted attention in various fields of cell biology, including in vitro single-cell and intercellular mechanics. Compared with other tweezing technologies such as optical and magnetic tweezers, acoustic tweezers possess stronger forces and are safer for use in biological systems. However, due to the limited spatial resolution or limited size of target objects, acoustic tweezers have primarily been used to manipulate cells in vitro. To extend the advantages of acoustic tweezers to other levels (e.g., molecular and in vivo levels), researchers have recently developed various types of acoustic tweezers such as single-beam acoustic tweezers (SBATs), surface acoustic wave (SAW) tweezers, and acoustic-streaming tweezers. Among these, SBATs utilize a single-focused beam, making the transducer and system simple, noninvasive, and capable of producing strong forces compared with other types of tweezers. Depending on the acoustic beam pattern, SBATs can be classified into Rayleigh regime, Mie regime, and acoustic vortex with different trapping dynamics and application levels. In this review, we provide an overview of the principles and configuration of each type of SBAT, their applications ranging from molecular to in vivo studies, and their limitations and prospects. Thus, this review demonstrates the significance and potential of SBAT technology in biophysics and biomedical engineering.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 10","pages":"1269-1288"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669592/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic tweezers have attracted attention in various fields of cell biology, including in vitro single-cell and intercellular mechanics. Compared with other tweezing technologies such as optical and magnetic tweezers, acoustic tweezers possess stronger forces and are safer for use in biological systems. However, due to the limited spatial resolution or limited size of target objects, acoustic tweezers have primarily been used to manipulate cells in vitro. To extend the advantages of acoustic tweezers to other levels (e.g., molecular and in vivo levels), researchers have recently developed various types of acoustic tweezers such as single-beam acoustic tweezers (SBATs), surface acoustic wave (SAW) tweezers, and acoustic-streaming tweezers. Among these, SBATs utilize a single-focused beam, making the transducer and system simple, noninvasive, and capable of producing strong forces compared with other types of tweezers. Depending on the acoustic beam pattern, SBATs can be classified into Rayleigh regime, Mie regime, and acoustic vortex with different trapping dynamics and application levels. In this review, we provide an overview of the principles and configuration of each type of SBAT, their applications ranging from molecular to in vivo studies, and their limitations and prospects. Thus, this review demonstrates the significance and potential of SBAT technology in biophysics and biomedical engineering.
用于细胞生物学的单束声镊:从分子到体内水平
声镊在细胞生物学的各个领域都备受关注,包括体外单细胞和细胞间力学。与光学镊子和磁性镊子等其他镊子技术相比,声学镊子具有更强的力,在生物系统中使用更安全。然而,由于空间分辨率有限或目标物体大小有限,声镊主要用于体外操作细胞。为了将声学镊子的优势扩展到其他层面(如分子和体内层面),研究人员最近开发了各种类型的声学镊子,如单束声学镊子(SBAT)、表面声波镊子和声流镊子。其中,SBAT 利用单聚焦声束,与其他类型的镊子相比,它使传感器和系统变得简单、无创,并能产生强大的力。根据声束模式的不同,SBAT 可分为瑞利模式、米氏模式和声漩涡模式,其捕获动力学和应用水平也各不相同。在这篇综述中,我们概述了每种 SBAT 的原理和配置、从分子到体内研究的应用,以及它们的局限性和前景。因此,本综述展示了 SBAT 技术在生物物理学和生物医学工程中的意义和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信