{"title":"A Novel Shielding Device for Cardiac Cath Labs.","authors":"Lancer Smith, Emily Caffrey, Charles Wilson","doi":"10.1097/HP.0000000000001890","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>This research evaluates the effectiveness of a large specialized cardiac catheterization laboratory shielding device (SCCLSD) placed perpendicular to the patient compared to traditional shielding methods in reducing occupational exposure to scattered x rays, contributing to the ongoing enhancement of radiation safety in the cardiac catheterization laboratory (CCL) setting. An experimental setup involving an anthropomorphic phantom on the catheterization table simulated radiation scatter from a patient. Measurements were taken systematically at various grid points and heights in the CCL using a Fluke 451P ion chamber while mimicking a real interventional scenario. In-air peak exposure rates were analyzed at head, chest, and waist heights in the anteroposterior (AP) position. Results demonstrated that the SCCLSD provided a superior radiation shadow and effective whole-body radiation exposure reduction compared to conventional shielding devices. Considering that conventional shielding requires staff to wear lead aprons, an effective dose equivalent correction factor was applied for exposure measurements without the SCCLSD. Even after the correction factor, the SCCLSD continued outperforming lead aprons and offered whole-body protection, including the head and arms, which is typically neglected with conventional shielding. The SCCLSD also reduces exposure to the eyes, aligning with lower occupational exposure recommendations from ICRP and NCRP. However, proper CCL staff positioning is important in maximizing the effectiveness of the SCCLSD. Future research avenues may explore exposure rates at different C-arm angles to more completely assess the SCCLSD's impact on occupational exposure.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"52-59"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001890","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: This research evaluates the effectiveness of a large specialized cardiac catheterization laboratory shielding device (SCCLSD) placed perpendicular to the patient compared to traditional shielding methods in reducing occupational exposure to scattered x rays, contributing to the ongoing enhancement of radiation safety in the cardiac catheterization laboratory (CCL) setting. An experimental setup involving an anthropomorphic phantom on the catheterization table simulated radiation scatter from a patient. Measurements were taken systematically at various grid points and heights in the CCL using a Fluke 451P ion chamber while mimicking a real interventional scenario. In-air peak exposure rates were analyzed at head, chest, and waist heights in the anteroposterior (AP) position. Results demonstrated that the SCCLSD provided a superior radiation shadow and effective whole-body radiation exposure reduction compared to conventional shielding devices. Considering that conventional shielding requires staff to wear lead aprons, an effective dose equivalent correction factor was applied for exposure measurements without the SCCLSD. Even after the correction factor, the SCCLSD continued outperforming lead aprons and offered whole-body protection, including the head and arms, which is typically neglected with conventional shielding. The SCCLSD also reduces exposure to the eyes, aligning with lower occupational exposure recommendations from ICRP and NCRP. However, proper CCL staff positioning is important in maximizing the effectiveness of the SCCLSD. Future research avenues may explore exposure rates at different C-arm angles to more completely assess the SCCLSD's impact on occupational exposure.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.