{"title":"Inhibitory Activity and Mechanism of High-Voltage Prick Electric Field Against <i>Salmonella enteritidis</i> on Gelatin Plates and Selected Food Systems.","authors":"Haiyang Yan, Shuanglin Liu, Youhua Xian, Qingyan Liu, Yan Zhang, Yuan Yuan","doi":"10.1089/fpd.2024.0054","DOIUrl":null,"url":null,"abstract":"<p><p>The present study assesses the antibacterial effect of a high-voltage prick electric field (HVPEF) on <i>Salmonella enteritidis</i> on gelatin plates and selected food systems. The results showed that <i>S. enteritidis</i> were susceptible to HVPEF treatment, with a mortality rate of 98% on the gelatin plate at 13 kV for 15 min. The survival rate of <i>S. enteritidis</i> decreased linearly with time and then stabilized after a sharp decline. The morphological change and the loss of internal nucleic acids and proteins suggest that the cell membrane was damaged by HVPEF, appearing more permeable and less fluid. Compared with the untreated group, both reactive oxygen species (ROS) and malondialdehyde increased significantly in the treated groups. Flow cytometry results suggest that DNA was severely damaged, which led to cell death, as shown by the elevated levels of intracellular ROS and lipid peroxidation. The death rate of <i>S. enteritidis</i> on the food surface significantly rose with the increase of HVPEF intensity, reaching 91 ± 1.6% (salmon), 88.2 ± 2.2% (chicken breast), 72.9 ± 2.7% (sausage), and 66.9 ± 1.6% (steak), respectively, at 14 kV for 30 min. HVPEF resulted in no significant change in color or texture; the changes in total viable count and pH were less significant than in the untreated group. Finally, HVPEF treatment led to lower levels of total volatile base nitrogen and thiobarbituric acid reactive substances in chicken breasts, which potentially contributes to longer shelf life.</p>","PeriodicalId":12333,"journal":{"name":"Foodborne pathogens and disease","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foodborne pathogens and disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/fpd.2024.0054","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study assesses the antibacterial effect of a high-voltage prick electric field (HVPEF) on Salmonella enteritidis on gelatin plates and selected food systems. The results showed that S. enteritidis were susceptible to HVPEF treatment, with a mortality rate of 98% on the gelatin plate at 13 kV for 15 min. The survival rate of S. enteritidis decreased linearly with time and then stabilized after a sharp decline. The morphological change and the loss of internal nucleic acids and proteins suggest that the cell membrane was damaged by HVPEF, appearing more permeable and less fluid. Compared with the untreated group, both reactive oxygen species (ROS) and malondialdehyde increased significantly in the treated groups. Flow cytometry results suggest that DNA was severely damaged, which led to cell death, as shown by the elevated levels of intracellular ROS and lipid peroxidation. The death rate of S. enteritidis on the food surface significantly rose with the increase of HVPEF intensity, reaching 91 ± 1.6% (salmon), 88.2 ± 2.2% (chicken breast), 72.9 ± 2.7% (sausage), and 66.9 ± 1.6% (steak), respectively, at 14 kV for 30 min. HVPEF resulted in no significant change in color or texture; the changes in total viable count and pH were less significant than in the untreated group. Finally, HVPEF treatment led to lower levels of total volatile base nitrogen and thiobarbituric acid reactive substances in chicken breasts, which potentially contributes to longer shelf life.
期刊介绍:
Foodborne Pathogens and Disease is one of the most inclusive scientific publications on the many disciplines that contribute to food safety. Spanning an array of issues from "farm-to-fork," the Journal bridges the gap between science and policy to reduce the burden of foodborne illness worldwide.
Foodborne Pathogens and Disease coverage includes:
Agroterrorism
Safety of organically grown and genetically modified foods
Emerging pathogens
Emergence of drug resistance
Methods and technology for rapid and accurate detection
Strategies to destroy or control foodborne pathogens
Novel strategies for the prevention and control of plant and animal diseases that impact food safety
Biosecurity issues and the implications of new regulatory guidelines
Impact of changing lifestyles and consumer demands on food safety.