{"title":"Dosage by design – 3D printing individualized cabozantinib tablets with immediate release","authors":"Jonas Lenhart, Dominique J. Lunter","doi":"10.1016/j.ejpb.2024.114501","DOIUrl":null,"url":null,"abstract":"<div><div>Production of patient-specific dosage forms is important to improve patient adherence and effectiveness while reducing the prevalence and severity of adverse effects. Due to its possibility of rapid prototyping 3D printing can be used to produce individual dosages while utilizing techniques such as hot melt extrusion to increase the bioavailability of poorly soluble drugs. In this work, Parteck MXP and Kollicoat IR were used as water-soluble polymer bases for formulation development for 3D printing of various dosages incorporating cabozantinib while enabling immediate release. The effect of tablet design and the excipients sorbitol, croscarmellose sodium, and sodium starch glycolate was investigated for this goal. A way to calculate the size of tablets for predetermined dosages is proposed to enable the printing of individual strengths from one formulation. Rheological data were collected to deepen the understanding of the role of melt viscosity in 3D printing and hot melt extrusion processes. The production of immediate-release cabozantinib tablets containing every therapeutically relevant dosage in a single unit produced by two-step 3D printing was realized.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114501"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003278/pdfft?md5=51bc06c5a32ccc2ffa4abcaf1de58807&pid=1-s2.0-S0939641124003278-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003278","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Production of patient-specific dosage forms is important to improve patient adherence and effectiveness while reducing the prevalence and severity of adverse effects. Due to its possibility of rapid prototyping 3D printing can be used to produce individual dosages while utilizing techniques such as hot melt extrusion to increase the bioavailability of poorly soluble drugs. In this work, Parteck MXP and Kollicoat IR were used as water-soluble polymer bases for formulation development for 3D printing of various dosages incorporating cabozantinib while enabling immediate release. The effect of tablet design and the excipients sorbitol, croscarmellose sodium, and sodium starch glycolate was investigated for this goal. A way to calculate the size of tablets for predetermined dosages is proposed to enable the printing of individual strengths from one formulation. Rheological data were collected to deepen the understanding of the role of melt viscosity in 3D printing and hot melt extrusion processes. The production of immediate-release cabozantinib tablets containing every therapeutically relevant dosage in a single unit produced by two-step 3D printing was realized.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.