Deep learning reconstruction algorithm and high-concentration contrast medium: feasibility of a double-low protocol in coronary computed tomography angiography.
IF 4.7 2区 医学Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Damiano Caruso, Domenico De Santis, Giuseppe Tremamunno, Curzio Santangeli, Tiziano Polidori, Giovanna G Bona, Marta Zerunian, Antonella Del Gaudio, Luca Pugliese, Andrea Laghi
{"title":"Deep learning reconstruction algorithm and high-concentration contrast medium: feasibility of a double-low protocol in coronary computed tomography angiography.","authors":"Damiano Caruso, Domenico De Santis, Giuseppe Tremamunno, Curzio Santangeli, Tiziano Polidori, Giovanna G Bona, Marta Zerunian, Antonella Del Gaudio, Luca Pugliese, Andrea Laghi","doi":"10.1007/s00330-024-11059-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate radiation dose and image quality of a double-low CCTA protocol reconstructed utilizing high-strength deep learning image reconstructions (DLIR-H) compared to standard adaptive statistical iterative reconstruction (ASiR-V) protocol in non-obese patients.</p><p><strong>Materials and methods: </strong>From June to October 2022, consecutive patients, undergoing clinically indicated CCTA, with BMI < 30 kg/m<sup>2</sup> were prospectively included and randomly assigned into three groups: group A (100 kVp, ASiR-V 50%, iodine delivery rate [IDR] = 1.8 g/s), group B (80 kVp, DLIR-H, IDR = 1.4 g/s), and group C (80 kVp, DLIR-H, IDR = 1.2 g/s). High-concentration contrast medium was administered. Image quality analysis was evaluated by two radiologists. Radiation and contrast dose, and objective and subjective image quality were compared across the three groups.</p><p><strong>Results: </strong>The final population consisted of 255 patients (64 ± 10 years, 161 men), 85 per group. Group B yielded 42% radiation dose reduction (2.36 ± 0.9 mSv) compared to group A (4.07 ± 1.2 mSv; p < 0.001) and achieved a higher signal-to-noise ratio (30.5 ± 11.5), contrast-to-noise-ratio (27.8 ± 11), and subjective image quality (Likert scale score: 4, interquartile range: 3-4) compared to group A and group C (all p ≤ 0.001). Contrast medium dose in group C (44.8 ± 4.4 mL) was lower than group A (57.7 ± 6.2 mL) and B (50.4 ± 4.3 mL), all the comparisons were statistically different (all p < 0.001).</p><p><strong>Conclusion: </strong>DLIR-H combined with 80-kVp CCTA with an IDR 1.4 significantly reduces radiation and contrast medium exposure while improving image quality compared to conventional 100-kVp with 1.8 IDR protocol in non-obese patients.</p><p><strong>Clinical relevance statement: </strong>Low radiation and low contrast medium dose coronary CT angiography protocol is feasible with high-strength deep learning reconstruction and high-concentration contrast medium without compromising image quality.</p><p><strong>Key points: </strong>Minimizing the radiation and contrast medium dose while maintaining CT image quality is highly desirable. High-strength deep learning iterative reconstruction protocol yielded 42% radiation dose reduction compared to conventional protocol. \"Double-low\" coronary CTA is feasible with high-strength deep learning reconstruction without compromising image quality in non-obese patients.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"2213-2221"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11059-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To evaluate radiation dose and image quality of a double-low CCTA protocol reconstructed utilizing high-strength deep learning image reconstructions (DLIR-H) compared to standard adaptive statistical iterative reconstruction (ASiR-V) protocol in non-obese patients.
Materials and methods: From June to October 2022, consecutive patients, undergoing clinically indicated CCTA, with BMI < 30 kg/m2 were prospectively included and randomly assigned into three groups: group A (100 kVp, ASiR-V 50%, iodine delivery rate [IDR] = 1.8 g/s), group B (80 kVp, DLIR-H, IDR = 1.4 g/s), and group C (80 kVp, DLIR-H, IDR = 1.2 g/s). High-concentration contrast medium was administered. Image quality analysis was evaluated by two radiologists. Radiation and contrast dose, and objective and subjective image quality were compared across the three groups.
Results: The final population consisted of 255 patients (64 ± 10 years, 161 men), 85 per group. Group B yielded 42% radiation dose reduction (2.36 ± 0.9 mSv) compared to group A (4.07 ± 1.2 mSv; p < 0.001) and achieved a higher signal-to-noise ratio (30.5 ± 11.5), contrast-to-noise-ratio (27.8 ± 11), and subjective image quality (Likert scale score: 4, interquartile range: 3-4) compared to group A and group C (all p ≤ 0.001). Contrast medium dose in group C (44.8 ± 4.4 mL) was lower than group A (57.7 ± 6.2 mL) and B (50.4 ± 4.3 mL), all the comparisons were statistically different (all p < 0.001).
Conclusion: DLIR-H combined with 80-kVp CCTA with an IDR 1.4 significantly reduces radiation and contrast medium exposure while improving image quality compared to conventional 100-kVp with 1.8 IDR protocol in non-obese patients.
Clinical relevance statement: Low radiation and low contrast medium dose coronary CT angiography protocol is feasible with high-strength deep learning reconstruction and high-concentration contrast medium without compromising image quality.
Key points: Minimizing the radiation and contrast medium dose while maintaining CT image quality is highly desirable. High-strength deep learning iterative reconstruction protocol yielded 42% radiation dose reduction compared to conventional protocol. "Double-low" coronary CTA is feasible with high-strength deep learning reconstruction without compromising image quality in non-obese patients.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.