Jasper W van der Graaf, Liron Brundel, Miranda L van Hooff, Marinus de Kleuver, Nikolas Lessmann, Bas J Maresch, Myrthe M Vestering, Jacco Spermon, Bram van Ginneken, Matthieu J C M Rutten
{"title":"AI-based lumbar central canal stenosis classification on sagittal MR images is comparable to experienced radiologists using axial images.","authors":"Jasper W van der Graaf, Liron Brundel, Miranda L van Hooff, Marinus de Kleuver, Nikolas Lessmann, Bas J Maresch, Myrthe M Vestering, Jacco Spermon, Bram van Ginneken, Matthieu J C M Rutten","doi":"10.1007/s00330-024-11080-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The assessment of lumbar central canal stenosis (LCCS) is crucial for diagnosing and planning treatment for patients with low back pain and neurogenic pain. However, manual assessment methods are time-consuming, variable, and require axial MRIs. The aim of this study is to develop and validate an AI-based model that automatically classifies LCCS using sagittal T2-weighted MRIs.</p><p><strong>Methods: </strong>A pre-existing 3D AI algorithm was utilized to segment the spinal canal and intervertebral discs (IVDs), enabling quantitative measurements at each IVD level. Four musculoskeletal radiologists graded 683 IVD levels from 186 LCCS patients using the 4-class Lee grading system. A second consensus reading was conducted by readers 1 and 2, which, along with automatic measurements, formed the training dataset for a multiclass (grade 0-3) and binary (grade 0-1 vs. 2-3) random forest classifier with tenfold cross-validation.</p><p><strong>Results: </strong>The multiclass model achieved a Cohen's weighted kappa of 0.86 (95% CI: 0.82-0.90), comparable to readers 3 and 4 with 0.85 (95% CI: 0.80-0.89) and 0.73 (95% CI: 0.68-0.79) respectively. The binary model demonstrated an AUC of 0.98 (95% CI: 0.97-0.99), sensitivity of 93% (95% CI: 91-96%), and specificity of 91% (95% CI: 87-95%). In comparison, readers 3 and 4 achieved a specificity of 98 and 99% and sensitivity of 74 and 54%, respectively.</p><p><strong>Conclusion: </strong>Both the multiclass and binary models, while only using sagittal MR images, perform on par with experienced radiologists who also had access to axial sequences. This underscores the potential of this novel algorithm in enhancing diagnostic accuracy and efficiency in medical imaging.</p><p><strong>Key points: </strong>Question How can the classification of lumbar central canal stenosis (LCCS) be made more efficient? Findings Multiclass and binary AI models, using only sagittal MR images, performed on par with experienced radiologists who also had access to axial sequences. Clinical relevance Our AI algorithm accurately classifies LCCS from sagittal MRI, matching experienced radiologists. This study offers a promising tool for automated LCCS assessment from sagittal T2 MRI, potentially reducing the reliance on additional axial imaging.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"2298-2306"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11080-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The assessment of lumbar central canal stenosis (LCCS) is crucial for diagnosing and planning treatment for patients with low back pain and neurogenic pain. However, manual assessment methods are time-consuming, variable, and require axial MRIs. The aim of this study is to develop and validate an AI-based model that automatically classifies LCCS using sagittal T2-weighted MRIs.
Methods: A pre-existing 3D AI algorithm was utilized to segment the spinal canal and intervertebral discs (IVDs), enabling quantitative measurements at each IVD level. Four musculoskeletal radiologists graded 683 IVD levels from 186 LCCS patients using the 4-class Lee grading system. A second consensus reading was conducted by readers 1 and 2, which, along with automatic measurements, formed the training dataset for a multiclass (grade 0-3) and binary (grade 0-1 vs. 2-3) random forest classifier with tenfold cross-validation.
Results: The multiclass model achieved a Cohen's weighted kappa of 0.86 (95% CI: 0.82-0.90), comparable to readers 3 and 4 with 0.85 (95% CI: 0.80-0.89) and 0.73 (95% CI: 0.68-0.79) respectively. The binary model demonstrated an AUC of 0.98 (95% CI: 0.97-0.99), sensitivity of 93% (95% CI: 91-96%), and specificity of 91% (95% CI: 87-95%). In comparison, readers 3 and 4 achieved a specificity of 98 and 99% and sensitivity of 74 and 54%, respectively.
Conclusion: Both the multiclass and binary models, while only using sagittal MR images, perform on par with experienced radiologists who also had access to axial sequences. This underscores the potential of this novel algorithm in enhancing diagnostic accuracy and efficiency in medical imaging.
Key points: Question How can the classification of lumbar central canal stenosis (LCCS) be made more efficient? Findings Multiclass and binary AI models, using only sagittal MR images, performed on par with experienced radiologists who also had access to axial sequences. Clinical relevance Our AI algorithm accurately classifies LCCS from sagittal MRI, matching experienced radiologists. This study offers a promising tool for automated LCCS assessment from sagittal T2 MRI, potentially reducing the reliance on additional axial imaging.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.