{"title":"Building high-speed facilitated transport channels in Pebax membranes with montmorillonite for efficient CO<sub>2</sub>/N<sub>2</sub> separation.","authors":"Bing Zhang, Renying Qian, Yu Jiang, Jian Wang, Yonghong Wu","doi":"10.1080/09593330.2024.2405666","DOIUrl":null,"url":null,"abstract":"<p><p>Development of high-performance mixed matrix membranes (MMMs) is of great significance for CO<sub>2</sub> separation membrane technology, in order to improve the commercial competitiveness and practical applications. Montmorillonite (MMT) was developed as a dopant to fabricate Polyether block amide (Pebax1074)-based MMMs for strengthening the CO<sub>2</sub>/N<sub>2</sub> separation. The morphology, chemical groups, microstructure, and thermal properties of MMMs were characterised by scanning electron microscope, FTIR spectroscopy, X-ray diffraction and thermal analysis, respectively. The effects of MMT contents, permeation pressure and permeation temperature on the gas separation performance of the Pebax/MMT MMMs were investigated. The results show that the uniformly dispersed dopants MMT in the membrane matrix significantly influence the thermal stability and the structural compactness of MMMs. Moreover, the CO<sub>2</sub> permeability monotonously increases in spite of the CO<sub>2</sub>/N<sub>2</sub> selectivity first increasing and then decreasing with the MMT content elevating from 0% to 10% in MMMs. The highest CO<sub>2</sub>/N<sub>2</sub> selectivity could reach to 120.3, along with the CO<sub>2</sub> permeability of 130.6 Barrer for the MMMs made by MMT content of 6%.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-15"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2405666","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Development of high-performance mixed matrix membranes (MMMs) is of great significance for CO2 separation membrane technology, in order to improve the commercial competitiveness and practical applications. Montmorillonite (MMT) was developed as a dopant to fabricate Polyether block amide (Pebax1074)-based MMMs for strengthening the CO2/N2 separation. The morphology, chemical groups, microstructure, and thermal properties of MMMs were characterised by scanning electron microscope, FTIR spectroscopy, X-ray diffraction and thermal analysis, respectively. The effects of MMT contents, permeation pressure and permeation temperature on the gas separation performance of the Pebax/MMT MMMs were investigated. The results show that the uniformly dispersed dopants MMT in the membrane matrix significantly influence the thermal stability and the structural compactness of MMMs. Moreover, the CO2 permeability monotonously increases in spite of the CO2/N2 selectivity first increasing and then decreasing with the MMT content elevating from 0% to 10% in MMMs. The highest CO2/N2 selectivity could reach to 120.3, along with the CO2 permeability of 130.6 Barrer for the MMMs made by MMT content of 6%.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current