Na Wang, Mingyue Yin, Jiaqi Yu, Jing Zhang, Xueli Pan
{"title":"Comparative investigation of exosome extraction from rat bone marrow mesenchymal stem cells using three different methodologies","authors":"Na Wang, Mingyue Yin, Jiaqi Yu, Jing Zhang, Xueli Pan","doi":"10.1002/elps.202400055","DOIUrl":null,"url":null,"abstract":"<p>Exosomes have been identified as crucial mediators in numerous physiological and pathological processes, emerging as a focal point of scientific inquiry. This study aims to compare three methods for isolating exosomes from rat bone marrow mesenchymal stem cells: ultracentrifugation (UC), ultrafast separation system (EXODUS), and commercial precipitation kit (EXO-kit). First, the investigation compared exosomal morphology, particle size distribution, and expression of marker proteins. Subsequently, the RNA content, protein concentration, and purity of exosomes were evaluated. Finally, the impact of these exosomes on cellular metabolic viability and migration capacity was assessed. Results indicated that exosomes exhibited spherical or elliptical membrane structures, and most of the exosomes extracted by the three methods were in the range of 30 to 200 nm. UC-extracted exosomes demonstrated the least impurities and clearest background, followed by EXODUS-extracted exosomes, and lastly EXO-kit-extracted exosomes. The EXO-kit-extracted exosomes yielded the highest RNA and protein content, whereas those isolated through UC exhibited superior purity. Furthermore, exosomes extracted from EXODUS and EXO-kit methods effectively enhanced the metabolic viability and migratory ability of osteoblast precursor cells compared to UC-extracted exosomes. In conclusion, each of the three methodologies presents advantages and limitations. Therefore, the selection of an appropriate exosome extraction technique should be based on specific experimental objectives and requirements.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":"45 21-22","pages":"2045-2053"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400055","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Exosomes have been identified as crucial mediators in numerous physiological and pathological processes, emerging as a focal point of scientific inquiry. This study aims to compare three methods for isolating exosomes from rat bone marrow mesenchymal stem cells: ultracentrifugation (UC), ultrafast separation system (EXODUS), and commercial precipitation kit (EXO-kit). First, the investigation compared exosomal morphology, particle size distribution, and expression of marker proteins. Subsequently, the RNA content, protein concentration, and purity of exosomes were evaluated. Finally, the impact of these exosomes on cellular metabolic viability and migration capacity was assessed. Results indicated that exosomes exhibited spherical or elliptical membrane structures, and most of the exosomes extracted by the three methods were in the range of 30 to 200 nm. UC-extracted exosomes demonstrated the least impurities and clearest background, followed by EXODUS-extracted exosomes, and lastly EXO-kit-extracted exosomes. The EXO-kit-extracted exosomes yielded the highest RNA and protein content, whereas those isolated through UC exhibited superior purity. Furthermore, exosomes extracted from EXODUS and EXO-kit methods effectively enhanced the metabolic viability and migratory ability of osteoblast precursor cells compared to UC-extracted exosomes. In conclusion, each of the three methodologies presents advantages and limitations. Therefore, the selection of an appropriate exosome extraction technique should be based on specific experimental objectives and requirements.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.