Genomic and Chemical Evidence on Biosynthesis of Taxane Diterpenoids in Alternaria Isolates from Cupressaceae.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Jalal Soltani, Adib Sheikh-Ahmadi
{"title":"Genomic and Chemical Evidence on Biosynthesis of Taxane Diterpenoids in Alternaria Isolates from Cupressaceae.","authors":"Jalal Soltani, Adib Sheikh-Ahmadi","doi":"10.1007/s00284-024-03886-4","DOIUrl":null,"url":null,"abstract":"<p><p>Alternaria species (Deuteromycetes, Ascomycota) as ubiquitous fungi and prolific producers of a variety of toxic compounds are a part of microbiomes of plants, humans, and animals, mainly causing disease, allergic reactions, and toxicosis. However, some species have also been reported as endophytic microorganisms with highly bioactive metabolites. Our previous results indicate that potentially endophytic Alternaria species from Cupressaceae produce bioactive metabolites that possibly contribute to plant holobiont's health. Here, a possible mechanism behind this bioactivity is elucidated. As some endophytic fungi are reported to produce cytotoxic taxane diterpenoids, eight potentially endophytic Alternaria isolates from our collection were analyzed for the presence of the key genes of the paclitaxel (Taxol) biosynthetic pathway, i.e., taxadin synthase (ts), 10-deacetylbaccatin III-10-O-acetyltransferase (dbat), and C-13-phenylpropanoid side-chain CoA acyltransferase (bapt). The presence of all genes, i.e., ts, dbat, and bapt, was detected by PCR in six isolates and dbat and bapt in two isolates. Chemical analyses of the fermentation broths by TLC and HPLC chromatography and IR spectroscopy indicated the synthesis of the final product, i.e., paclitaxel. So, we introduce the synthesis of taxane diterpenoids as a possible mechanism by which Alternaria occupies the plant niches and protects the plant holobiont in the presence of competing microorganisms.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03886-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alternaria species (Deuteromycetes, Ascomycota) as ubiquitous fungi and prolific producers of a variety of toxic compounds are a part of microbiomes of plants, humans, and animals, mainly causing disease, allergic reactions, and toxicosis. However, some species have also been reported as endophytic microorganisms with highly bioactive metabolites. Our previous results indicate that potentially endophytic Alternaria species from Cupressaceae produce bioactive metabolites that possibly contribute to plant holobiont's health. Here, a possible mechanism behind this bioactivity is elucidated. As some endophytic fungi are reported to produce cytotoxic taxane diterpenoids, eight potentially endophytic Alternaria isolates from our collection were analyzed for the presence of the key genes of the paclitaxel (Taxol) biosynthetic pathway, i.e., taxadin synthase (ts), 10-deacetylbaccatin III-10-O-acetyltransferase (dbat), and C-13-phenylpropanoid side-chain CoA acyltransferase (bapt). The presence of all genes, i.e., ts, dbat, and bapt, was detected by PCR in six isolates and dbat and bapt in two isolates. Chemical analyses of the fermentation broths by TLC and HPLC chromatography and IR spectroscopy indicated the synthesis of the final product, i.e., paclitaxel. So, we introduce the synthesis of taxane diterpenoids as a possible mechanism by which Alternaria occupies the plant niches and protects the plant holobiont in the presence of competing microorganisms.

从基因组和化学角度证明濯缨草科 Alternaria Isolates 的紫杉烷二萜类化合物的生物合成。
交替孢属真菌(Deuteromycetes, Ascomycota)作为无处不在的真菌和多种有毒化合物的大量生产者,是植物、人类和动物微生物组的一部分,主要引起疾病、过敏反应和中毒。不过,也有报道称一些物种是具有高生物活性代谢物的内生微生物。我们之前的研究结果表明,濯缨科植物中的潜在内生菌 Alternaria 产生的生物活性代谢物可能有助于植物全生物体的健康。在此,我们将阐明这种生物活性背后的可能机制。据报道,一些内生真菌会产生具有细胞毒性的紫杉烷二萜类化合物,因此,我们对收集到的 8 个可能具有内生性的 Alternaria 分离物进行了分析,以确定是否存在紫杉醇(Taxol)生物合成途径的关键基因,即taxadin合成酶(ts)、10-脱乙酰基紫杉素 III-10-O-acetyltransferase (dbat)和 C-13-phenylpropanoid side-chain CoA acyltransferase (bapt)。通过聚合酶链式反应,在 6 个分离物中检测到了所有基因,即 ts、dbat 和 bapt,在 2 个分离物中检测到了 dbat 和 bapt。通过 TLC 和 HPLC 色谱法以及红外光谱法对发酵液进行化学分析,结果表明合成了最终产物,即紫杉醇。因此,我们将合成紫杉烷二萜类化合物作为一种可能的机制来介绍,Alternaria 通过这种机制占据植物壁龛,并在存在竞争微生物的情况下保护植物整体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信