Mentha spicata Mediated Formulation of Iron Oxide Nanoparticles Exhibit Superior Antimicrobial, Antioxidant, and Photodegradation Propensity Compared to Chemically Formulated Counterparts.

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Lipsa Leena Panigrahi, Shashank Shekhar, Ashirdbad Sarangi, Siddharth Satpathy, Ankita Parmanik, Anindya Bose, Debapriya Bhattacharya, Manoranjan Arakha
{"title":"Mentha spicata Mediated Formulation of Iron Oxide Nanoparticles Exhibit Superior Antimicrobial, Antioxidant, and Photodegradation Propensity Compared to Chemically Formulated Counterparts.","authors":"Lipsa Leena Panigrahi, Shashank Shekhar, Ashirdbad Sarangi, Siddharth Satpathy, Ankita Parmanik, Anindya Bose, Debapriya Bhattacharya, Manoranjan Arakha","doi":"10.2174/0115680266332330240910100638","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Iron oxide nanoparticles demonstrate tremendous potential in preserving the ecological balance of the environment since they act as antimicrobial agents and efficient photocatalysts. However, environmental sustainability has challenged the synthesis protocols of nanomaterials.</p><p><strong>Method: </strong>This study compares the green synthesis method with the scalable chemical synthesis method. In this work, Iron oxide nanoparticles were fabricated via the green chemistry technique utilizing the leaf extract of Mentha spicata (M-IONP) and also via the chemical co-precipitation method (C-IONP). The synthesized IONPs were analyzed by different characterization methods such as XRD, FTIR, SEM analysis, ZETA potential measurements, and DLS spectroscopy analysis.</p><p><strong>Results: </strong>The biosynthesized and chemically synthesized IONPs were analyzed for their mechanistic action against different applications like antimicrobial, antioxidant, and degradation of harmful dyes. Interestingly, the biosynthesized IONPs (M-IONP) exhibited more effective antimicrobial efficacy towards Gram-positive and Gram-negative organisms than chemically synthesized IONPs.</p><p><strong>Conclusion: </strong>The green synthesized M-IONP also showed significant antioxidant propensity similar to that of the standards taken. Additionally, green-synthesized M-IONP exhibited enhanced degradation efficacies against Methylene blue, chromium, and sulphamethoxazole in comparison to chemically synthesized IONP.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266332330240910100638","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Iron oxide nanoparticles demonstrate tremendous potential in preserving the ecological balance of the environment since they act as antimicrobial agents and efficient photocatalysts. However, environmental sustainability has challenged the synthesis protocols of nanomaterials.

Method: This study compares the green synthesis method with the scalable chemical synthesis method. In this work, Iron oxide nanoparticles were fabricated via the green chemistry technique utilizing the leaf extract of Mentha spicata (M-IONP) and also via the chemical co-precipitation method (C-IONP). The synthesized IONPs were analyzed by different characterization methods such as XRD, FTIR, SEM analysis, ZETA potential measurements, and DLS spectroscopy analysis.

Results: The biosynthesized and chemically synthesized IONPs were analyzed for their mechanistic action against different applications like antimicrobial, antioxidant, and degradation of harmful dyes. Interestingly, the biosynthesized IONPs (M-IONP) exhibited more effective antimicrobial efficacy towards Gram-positive and Gram-negative organisms than chemically synthesized IONPs.

Conclusion: The green synthesized M-IONP also showed significant antioxidant propensity similar to that of the standards taken. Additionally, green-synthesized M-IONP exhibited enhanced degradation efficacies against Methylene blue, chromium, and sulphamethoxazole in comparison to chemically synthesized IONP.

薄荷介导的氧化铁纳米粒子配方与化学配方相比具有更强的抗菌、抗氧化和光降解能力。
导言:由于氧化铁纳米粒子可用作抗菌剂和高效光催化剂,因此在保护环境生态平衡方面具有巨大潜力。然而,环境的可持续发展对纳米材料的合成方案提出了挑战:本研究比较了绿色合成法和可扩展化学合成法。在这项工作中,利用薄荷叶提取物(M-IONP)和化学共沉淀法(C-IONP),通过绿色化学技术制造了氧化铁纳米粒子。合成的 IONP 通过不同的表征方法进行了分析,如 XRD、FTIR、SEM 分析、ZETA 电位测量和 DLS 光谱分析:结果:对生物合成和化学合成的 IONPs 进行了机理分析,以了解它们在抗菌、抗氧化和降解有害染料等不同应用中的作用。有趣的是,与化学合成的 IONPs 相比,生物合成的 IONPs(M-IONP)对革兰氏阳性和革兰氏阴性菌具有更有效的抗菌功效:结论:绿色合成的 M-IONP 也显示出与所采用的标准相似的显著抗氧化倾向。此外,与化学合成的 IONP 相比,绿色合成的 M-IONP 对亚甲蓝、铬和磺胺甲噁唑的降解效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信