{"title":"Drivers of vessel progenitor fate define intermediate mesoderm dimensions by inhibiting kidney progenitor specification","authors":"Elliot A. Perens , Deborah Yelon","doi":"10.1016/j.ydbio.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>Proper organ formation depends on the precise delineation of organ territories containing defined numbers of progenitor cells. Kidney progenitors reside in bilateral stripes of posterior mesoderm that are referred to as the intermediate mesoderm (IM). Previously, we showed that the transcription factors Hand2 and Osr1 act to strike a balance between the specification of the kidney progenitors in the IM and the vessel progenitors in the laterally adjacent territory. Recently, the transcription factor Npas4l – an early and essential driver of vessel and blood progenitor formation – was shown to inhibit kidney development. Here we demonstrate how kidney progenitor specification is coordinated by <em>hand2</em>, <em>osr1</em>, and <em>npas4l</em>. We find that <em>npas4l</em> and the IM marker <em>pax2a</em> are transiently co-expressed in the posterior lateral mesoderm, and <em>npas4l</em> is necessary to inhibit IM formation. Consistent with the expression of <em>npas4l</em> flanking the medial and lateral sides of the IM, our findings suggest roles for <em>npas4l</em> in defining the IM boundaries at each of these borders. At the lateral IM border, <em>hand2</em> promotes and <em>osr1</em> inhibits the formation of <em>npas4l</em>-expressing lateral vessel progenitors, and <em>hand2</em> requires <em>npas4l</em> to inhibit IM formation and to promote vessel formation. Meanwhile, <em>npas4l</em> appears to have an additional role in suppressing IM fate at the medial border: <em>npas4l</em> loss-of-function enhances <em>hand2</em> mutant IM defects and results in excess IM generated outside of the lateral <em>hand2</em>-expressing territory. Together, our findings reveal that establishment of the medial and lateral boundaries of the IM requires inhibition of kidney progenitor specification by the neighboring drivers of vessel progenitor fate.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 126-139"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160624002355","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proper organ formation depends on the precise delineation of organ territories containing defined numbers of progenitor cells. Kidney progenitors reside in bilateral stripes of posterior mesoderm that are referred to as the intermediate mesoderm (IM). Previously, we showed that the transcription factors Hand2 and Osr1 act to strike a balance between the specification of the kidney progenitors in the IM and the vessel progenitors in the laterally adjacent territory. Recently, the transcription factor Npas4l – an early and essential driver of vessel and blood progenitor formation – was shown to inhibit kidney development. Here we demonstrate how kidney progenitor specification is coordinated by hand2, osr1, and npas4l. We find that npas4l and the IM marker pax2a are transiently co-expressed in the posterior lateral mesoderm, and npas4l is necessary to inhibit IM formation. Consistent with the expression of npas4l flanking the medial and lateral sides of the IM, our findings suggest roles for npas4l in defining the IM boundaries at each of these borders. At the lateral IM border, hand2 promotes and osr1 inhibits the formation of npas4l-expressing lateral vessel progenitors, and hand2 requires npas4l to inhibit IM formation and to promote vessel formation. Meanwhile, npas4l appears to have an additional role in suppressing IM fate at the medial border: npas4l loss-of-function enhances hand2 mutant IM defects and results in excess IM generated outside of the lateral hand2-expressing territory. Together, our findings reveal that establishment of the medial and lateral boundaries of the IM requires inhibition of kidney progenitor specification by the neighboring drivers of vessel progenitor fate.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.