Matthew J Magoon, Babak Nazer, Nazem Akoum, Patrick M Boyle
{"title":"Computational Medicine: What Electrophysiologists Should Know to Stay Ahead of the Curve.","authors":"Matthew J Magoon, Babak Nazer, Nazem Akoum, Patrick M Boyle","doi":"10.1007/s11886-024-02136-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Technology drives the field of cardiac electrophysiology. Recent computational advances will bring exciting changes. To stay ahead of the curve, we recommend electrophysiologists develop a robust appreciation for novel computational techniques, including deterministic, statistical, and hybrid models.</p><p><strong>Recent findings: </strong>In clinical applications, deterministic models use biophysically detailed simulations to offer patient-specific insights. Statistical techniques like machine learning and artificial intelligence recognize patterns in data. Emerging clinical tools are exploring avenues to combine all the above methodologies. We review three ways that computational medicine will aid electrophysiologists by: (1) improving personalized risk assessments, (2) weighing treatment options, and (3) guiding ablation procedures. Leveraging clinical data that are often readily available, computational models will offer valuable insights to improve arrhythmia patient care. As emerging tools promote personalized medicine, physicians must continue to critically evaluate technology-driven tools they consider using to ensure their appropriate implementation.</p>","PeriodicalId":10829,"journal":{"name":"Current Cardiology Reports","volume":" ","pages":"1393-1403"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Cardiology Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11886-024-02136-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Technology drives the field of cardiac electrophysiology. Recent computational advances will bring exciting changes. To stay ahead of the curve, we recommend electrophysiologists develop a robust appreciation for novel computational techniques, including deterministic, statistical, and hybrid models.
Recent findings: In clinical applications, deterministic models use biophysically detailed simulations to offer patient-specific insights. Statistical techniques like machine learning and artificial intelligence recognize patterns in data. Emerging clinical tools are exploring avenues to combine all the above methodologies. We review three ways that computational medicine will aid electrophysiologists by: (1) improving personalized risk assessments, (2) weighing treatment options, and (3) guiding ablation procedures. Leveraging clinical data that are often readily available, computational models will offer valuable insights to improve arrhythmia patient care. As emerging tools promote personalized medicine, physicians must continue to critically evaluate technology-driven tools they consider using to ensure their appropriate implementation.
期刊介绍:
The aim of this journal is to provide timely perspectives from experts on current advances in cardiovascular medicine. We also seek to provide reviews that highlight the most important recently published papers selected from the wealth of available cardiovascular literature.
We accomplish this aim by appointing key authorities in major subject areas across the discipline. Section editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year. An Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research. We also provide commentaries from well-known figures in the field.