Xiangning Feng , Jinsong Zhang , Jinsong Liu , Jiayue Su , Xinrui Liu , Mingwei Yang , Yuanli Peng , Haozhen Yan , Zeliang Chen
{"title":"A stable thymidine kinase 1 tetramer for improved quality control of serum level quantification","authors":"Xiangning Feng , Jinsong Zhang , Jinsong Liu , Jiayue Su , Xinrui Liu , Mingwei Yang , Yuanli Peng , Haozhen Yan , Zeliang Chen","doi":"10.1016/j.cca.2024.119967","DOIUrl":null,"url":null,"abstract":"<div><div>DNA synthesis is a critical process for cell growth and division. In cancer patients, an enzyme called thymidine kinase 1 (TK1) is often elevated in the blood, making it a valuable biomarker for cancer diagnosis and treatment. However, previous studies have shown that recombinant TK1 can exist in unstable mixtures of tetramers and dimers, leading to inconsistent results and potentially affecting accuracy. To address this issue, we hypothesized that incorporating tetrameric coiled-coil peptides could enhance TK1 self-assembly into stable tetramers without requiring additional adenosine triphosphate. In this study, we successfully expressed a recombinant TK1 tetramer protein in the <em>Escherichia coli</em> system. We optimized the induction conditions, significantly increasing protein expression levels, functionality, and solubility. Size exclusion chromatography confirmed the formation of a tetrameric structure in the expressed TK1 protein, with a molecular weight of 127.2 KDa, consistent with our expectations. We also found that the TK1 tetramer exhibited higher affinity with anti-TK1 IgY than wild-type TK1, as shown by enzyme-linked immunosorbent assay experiments. Moreover, the TK1 tetramer demonstrated good stability against heating, freeze-thawing and lyophilization with almost no immunoactivity lost. These findings suggest that recombinant TK1 tetramers have the potential to serve as calibrators in diagnostic assay kits, becoming promising candidates for quality control of clinical laboratory and in vitro diagnostic reagents.</div></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898124022204","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA synthesis is a critical process for cell growth and division. In cancer patients, an enzyme called thymidine kinase 1 (TK1) is often elevated in the blood, making it a valuable biomarker for cancer diagnosis and treatment. However, previous studies have shown that recombinant TK1 can exist in unstable mixtures of tetramers and dimers, leading to inconsistent results and potentially affecting accuracy. To address this issue, we hypothesized that incorporating tetrameric coiled-coil peptides could enhance TK1 self-assembly into stable tetramers without requiring additional adenosine triphosphate. In this study, we successfully expressed a recombinant TK1 tetramer protein in the Escherichia coli system. We optimized the induction conditions, significantly increasing protein expression levels, functionality, and solubility. Size exclusion chromatography confirmed the formation of a tetrameric structure in the expressed TK1 protein, with a molecular weight of 127.2 KDa, consistent with our expectations. We also found that the TK1 tetramer exhibited higher affinity with anti-TK1 IgY than wild-type TK1, as shown by enzyme-linked immunosorbent assay experiments. Moreover, the TK1 tetramer demonstrated good stability against heating, freeze-thawing and lyophilization with almost no immunoactivity lost. These findings suggest that recombinant TK1 tetramers have the potential to serve as calibrators in diagnostic assay kits, becoming promising candidates for quality control of clinical laboratory and in vitro diagnostic reagents.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.