{"title":"A non-autonomous framework for climate change and extreme weather events increase in a stochastic energy balance model.","authors":"G Del Sarto, F Flandoli","doi":"10.1063/5.0223309","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a three-timescale framework for modeling climate change and introduce a space-heterogeneous one-dimensional energy balance model. This model, addressing temperature fluctuations from rising carbon dioxide levels and the super-greenhouse effect in tropical regions, fits within the setting of stochastic reaction-diffusion equations. Our results show how both mean and variance of temperature increase, without the system going through a bifurcation point. This study aims to advance the conceptual understanding of the extreme weather events frequency increase due to climate change.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0223309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a three-timescale framework for modeling climate change and introduce a space-heterogeneous one-dimensional energy balance model. This model, addressing temperature fluctuations from rising carbon dioxide levels and the super-greenhouse effect in tropical regions, fits within the setting of stochastic reaction-diffusion equations. Our results show how both mean and variance of temperature increase, without the system going through a bifurcation point. This study aims to advance the conceptual understanding of the extreme weather events frequency increase due to climate change.