{"title":"Mathematical Modeling of Mating Probability and Fertile Egg Production in Helminth Parasites.","authors":"Gonzalo Maximiliano Lopez, Juan Pablo Aparicio","doi":"10.1007/s11538-024-01356-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we obtained a general formulation for the mating probability and fertile egg production in helminth parasites, focusing on the reproductive behavior of polygamous parasites and its implications for transmission dynamics. By exploring various reproductive variables in parasites with density-dependent fecundity, such as helminth parasites, we departed from the traditional assumptions of Poisson and negative binomial distributions to adopt an arbitrary distribution model. Our analysis considered critical factors such as mating probability, fertile egg production, and the distribution of female and male parasites among hosts, whether they are distributed together or separately. We show that the distribution of parasites within hosts significantly influences transmission dynamics, with implications for parasite persistence and, therefore, with implications in parasite control. Using statistical models and empirical data from Monte Carlo simulations, we provide insights into the complex interplay of reproductive variables in helminth parasites, enhancing our understanding of parasite dynamics and the transmission of parasitic diseases.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 11","pages":"131"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01356-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we obtained a general formulation for the mating probability and fertile egg production in helminth parasites, focusing on the reproductive behavior of polygamous parasites and its implications for transmission dynamics. By exploring various reproductive variables in parasites with density-dependent fecundity, such as helminth parasites, we departed from the traditional assumptions of Poisson and negative binomial distributions to adopt an arbitrary distribution model. Our analysis considered critical factors such as mating probability, fertile egg production, and the distribution of female and male parasites among hosts, whether they are distributed together or separately. We show that the distribution of parasites within hosts significantly influences transmission dynamics, with implications for parasite persistence and, therefore, with implications in parasite control. Using statistical models and empirical data from Monte Carlo simulations, we provide insights into the complex interplay of reproductive variables in helminth parasites, enhancing our understanding of parasite dynamics and the transmission of parasitic diseases.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.