Andreas Buttenschön, Shona Sinclair, Leah Edelstein-Keshet
{"title":"How Cells Stay Together: A Mechanism for Maintenance of a Robust Cluster Explored by Local and Non-local Continuum Models.","authors":"Andreas Buttenschön, Shona Sinclair, Leah Edelstein-Keshet","doi":"10.1007/s11538-024-01355-4","DOIUrl":null,"url":null,"abstract":"<p><p>Formation of organs and specialized tissues in embryonic development requires migration of cells to specific targets. In some instances, such cells migrate as a robust cluster. We here explore a recent local approximation of non-local continuum models by Falcó et al. (SIAM J Appl Math 84:17-42, 2023). We apply their theoretical results by specifying biologically-based cell-cell interactions, showing how such cell communication results in an effective attraction-repulsion Morse potential. We then explore the clustering instability, the existence and size of the cluster, and its stability. For attractant-repellent chemotaxis, we derive an explicit condition on cell and chemical properties that guarantee the existence of robust clusters. We also extend their work by investigating the accuracy of the local approximation relative to the full non-local model.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 11","pages":"129"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01355-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Formation of organs and specialized tissues in embryonic development requires migration of cells to specific targets. In some instances, such cells migrate as a robust cluster. We here explore a recent local approximation of non-local continuum models by Falcó et al. (SIAM J Appl Math 84:17-42, 2023). We apply their theoretical results by specifying biologically-based cell-cell interactions, showing how such cell communication results in an effective attraction-repulsion Morse potential. We then explore the clustering instability, the existence and size of the cluster, and its stability. For attractant-repellent chemotaxis, we derive an explicit condition on cell and chemical properties that guarantee the existence of robust clusters. We also extend their work by investigating the accuracy of the local approximation relative to the full non-local model.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.