{"title":"Forecasting and Predicting Stochastic Agent-Based Model Data with Biologically-Informed Neural Networks.","authors":"John T Nardini","doi":"10.1007/s11538-024-01357-2","DOIUrl":null,"url":null,"abstract":"<p><p>Collective migration is an important component of many biological processes, including wound healing, tumorigenesis, and embryo development. Spatial agent-based models (ABMs) are often used to model collective migration, but it is challenging to thoroughly predict these models' behavior throughout parameter space due to their random and computationally intensive nature. Modelers often coarse-grain ABM rules into mean-field differential equation (DE) models. While these DE models are fast to simulate, they suffer from poor (or even ill-posed) ABM predictions in some regions of parameter space. In this work, we describe how biologically-informed neural networks (BINNs) can be trained to learn interpretable BINN-guided DE models capable of accurately predicting ABM behavior. In particular, we show that BINN-guided partial DE (PDE) simulations can (1) forecast future spatial ABM data not seen during model training, and (2) predict ABM data at previously-unexplored parameter values. This latter task is achieved by combining BINN-guided PDE simulations with multivariate interpolation. We demonstrate our approach using three case study ABMs of collective migration that imitate cell biology experiments and find that BINN-guided PDEs accurately forecast and predict ABM data with a one-compartment PDE when the mean-field PDE is ill-posed or requires two compartments. This work suggests that BINN-guided PDEs allow modelers to efficiently explore parameter space, which may enable data-driven tasks for ABMs, such as estimating parameters from experimental data. All code and data from our study is available at https://github.com/johnnardini/Forecasting_predicting_ABMs .</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 11","pages":"130"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01357-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Collective migration is an important component of many biological processes, including wound healing, tumorigenesis, and embryo development. Spatial agent-based models (ABMs) are often used to model collective migration, but it is challenging to thoroughly predict these models' behavior throughout parameter space due to their random and computationally intensive nature. Modelers often coarse-grain ABM rules into mean-field differential equation (DE) models. While these DE models are fast to simulate, they suffer from poor (or even ill-posed) ABM predictions in some regions of parameter space. In this work, we describe how biologically-informed neural networks (BINNs) can be trained to learn interpretable BINN-guided DE models capable of accurately predicting ABM behavior. In particular, we show that BINN-guided partial DE (PDE) simulations can (1) forecast future spatial ABM data not seen during model training, and (2) predict ABM data at previously-unexplored parameter values. This latter task is achieved by combining BINN-guided PDE simulations with multivariate interpolation. We demonstrate our approach using three case study ABMs of collective migration that imitate cell biology experiments and find that BINN-guided PDEs accurately forecast and predict ABM data with a one-compartment PDE when the mean-field PDE is ill-posed or requires two compartments. This work suggests that BINN-guided PDEs allow modelers to efficiently explore parameter space, which may enable data-driven tasks for ABMs, such as estimating parameters from experimental data. All code and data from our study is available at https://github.com/johnnardini/Forecasting_predicting_ABMs .
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.