Generative neural networks for experimental manipulation: Examining dominance-trustworthiness face impressions with data-efficient models.

IF 3.2 2区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Adam Sobieszek, Maciej Siemiątkowski, Kamil K Imbir
{"title":"Generative neural networks for experimental manipulation: Examining dominance-trustworthiness face impressions with data-efficient models.","authors":"Adam Sobieszek, Maciej Siemiątkowski, Kamil K Imbir","doi":"10.1111/bjop.12732","DOIUrl":null,"url":null,"abstract":"<p><p>An important development in the study of face impressions was the introduction of dominance and trustworthiness as the primary and potentially orthogonal traits judged from faces. We test competing predictions of recent accounts that address evidence against the independence of these judgements. To this end we develop a version of recent 'deep models of face impressions' better suited for data-efficient experimental manipulation. In Study 1 (N = 128) we build impression models using 15 times less ratings per dimension than previously assumed necessary. In Study 2 (N = 234) we show how our method can precisely manipulate dominance and trustworthiness impressions of face photographs and observe how the effects' pattern of the cues of one trait on impressions of the other differs from previous accounts. We propose an altered account that stresses how a successful execution of the two judgements' functional roles requires impressions of trustworthiness and dominance to be based on cues of both traits. Finally we show our manipulation resulted in larger effect sizes using a broader array of features than previous methods. Our approach lets researchers manipulate face stimuli for various face perception studies and investigate new dimensions with minimal data collection.</p>","PeriodicalId":9300,"journal":{"name":"British journal of psychology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bjop.12732","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An important development in the study of face impressions was the introduction of dominance and trustworthiness as the primary and potentially orthogonal traits judged from faces. We test competing predictions of recent accounts that address evidence against the independence of these judgements. To this end we develop a version of recent 'deep models of face impressions' better suited for data-efficient experimental manipulation. In Study 1 (N = 128) we build impression models using 15 times less ratings per dimension than previously assumed necessary. In Study 2 (N = 234) we show how our method can precisely manipulate dominance and trustworthiness impressions of face photographs and observe how the effects' pattern of the cues of one trait on impressions of the other differs from previous accounts. We propose an altered account that stresses how a successful execution of the two judgements' functional roles requires impressions of trustworthiness and dominance to be based on cues of both traits. Finally we show our manipulation resulted in larger effect sizes using a broader array of features than previous methods. Our approach lets researchers manipulate face stimuli for various face perception studies and investigate new dimensions with minimal data collection.

用于实验操作的生成神经网络:用数据高效模型检验支配力-可信度面部印象。
面孔印象研究的一个重要发展是引入了支配力和可信度作为从面孔中判断出的主要和潜在的正交特征。我们检验了最近一些观点的竞争性预测,这些观点针对这些判断的独立性提出了证据。为此,我们开发了一种新的 "人脸印象深度模型",这种模型更适合于数据效率高的实验操作。在研究 1(N = 128)中,我们建立了印象模型,每个维度使用的评分比以前假设的少 15 倍。在研究 2(N = 234)中,我们展示了我们的方法如何精确地操作人脸照片中的优势和可信度印象,并观察一种特质的线索对另一种特质印象的影响模式与之前的说法有何不同。我们提出了一种新的解释,强调要成功执行这两种判断的功能作用,就必须根据这两种特质的线索来建立可信度和优势度的印象。最后,我们表明,与以前的方法相比,我们的操作方法使用了更多的特征,从而产生了更大的效应量。我们的方法可以让研究人员在各种人脸感知研究中操纵人脸刺激,并以最少的数据收集来研究新的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
British journal of psychology
British journal of psychology PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.50%
发文量
67
期刊介绍: The British Journal of Psychology publishes original research on all aspects of general psychology including cognition; health and clinical psychology; developmental, social and occupational psychology. For information on specific requirements, please view Notes for Contributors. We attract a large number of international submissions each year which make major contributions across the range of psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信