Sensitivity analysis for publication bias in meta-analysis of sparse data based on exact likelihood.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Taojun Hu, Yi Zhou, Satoshi Hattori
{"title":"Sensitivity analysis for publication bias in meta-analysis of sparse data based on exact likelihood.","authors":"Taojun Hu, Yi Zhou, Satoshi Hattori","doi":"10.1093/biomtc/ujae092","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-analysis is a powerful tool to synthesize findings from multiple studies. The normal-normal random-effects model is widely used to account for between-study heterogeneity. However, meta-analyses of sparse data, which may arise when the event rate is low for binary or count outcomes, pose a challenge to the normal-normal random-effects model in the accuracy and stability in inference since the normal approximation in the within-study model may not be good. To reduce bias arising from data sparsity, the generalized linear mixed model can be used by replacing the approximate normal within-study model with an exact model. Publication bias is one of the most serious threats in meta-analysis. Several quantitative sensitivity analysis methods for evaluating the potential impacts of selective publication are available for the normal-normal random-effects model. We propose a sensitivity analysis method by extending the likelihood-based sensitivity analysis with the $t$-statistic selection function of Copas to several generalized linear mixed-effects models. Through applications of our proposed method to several real-world meta-analyses and simulation studies, the proposed method was proven to outperform the likelihood-based sensitivity analysis based on the normal-normal model. The proposed method would give useful guidance to address publication bias in the meta-analysis of sparse data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Meta-analysis is a powerful tool to synthesize findings from multiple studies. The normal-normal random-effects model is widely used to account for between-study heterogeneity. However, meta-analyses of sparse data, which may arise when the event rate is low for binary or count outcomes, pose a challenge to the normal-normal random-effects model in the accuracy and stability in inference since the normal approximation in the within-study model may not be good. To reduce bias arising from data sparsity, the generalized linear mixed model can be used by replacing the approximate normal within-study model with an exact model. Publication bias is one of the most serious threats in meta-analysis. Several quantitative sensitivity analysis methods for evaluating the potential impacts of selective publication are available for the normal-normal random-effects model. We propose a sensitivity analysis method by extending the likelihood-based sensitivity analysis with the $t$-statistic selection function of Copas to several generalized linear mixed-effects models. Through applications of our proposed method to several real-world meta-analyses and simulation studies, the proposed method was proven to outperform the likelihood-based sensitivity analysis based on the normal-normal model. The proposed method would give useful guidance to address publication bias in the meta-analysis of sparse data.

基于精确似然法的稀疏数据荟萃分析中出版偏差的敏感性分析。
元分析是综合多项研究结果的有力工具。正态随机效应模型被广泛用于解释研究间的异质性。然而,当二元或计数结果的事件发生率较低时,稀疏数据的荟萃分析在推断的准确性和稳定性方面对正态-正态随机效应模型提出了挑战,因为研究内模型的正态近似可能并不好。为了减少数据稀少造成的偏差,可以使用广义线性混合模型,用精确模型取代近似的正态研究内模型。发表偏倚是荟萃分析中最严重的威胁之一。对于正态随机效应模型,有几种定量灵敏度分析方法可用于评估选择性发表的潜在影响。我们提出了一种灵敏度分析方法,将基于似然法的灵敏度分析与 Copas 的 $t$ 统计量选择函数扩展到几种广义线性混合效应模型。通过将我们提出的方法应用于几个真实世界的荟萃分析和模拟研究,证明我们提出的方法优于基于正态模型的似然法灵敏度分析。所提出的方法将为解决稀疏数据荟萃分析中的发表偏倚问题提供有用的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信