{"title":"Sensitivity analysis for publication bias in meta-analysis of sparse data based on exact likelihood.","authors":"Taojun Hu, Yi Zhou, Satoshi Hattori","doi":"10.1093/biomtc/ujae092","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-analysis is a powerful tool to synthesize findings from multiple studies. The normal-normal random-effects model is widely used to account for between-study heterogeneity. However, meta-analyses of sparse data, which may arise when the event rate is low for binary or count outcomes, pose a challenge to the normal-normal random-effects model in the accuracy and stability in inference since the normal approximation in the within-study model may not be good. To reduce bias arising from data sparsity, the generalized linear mixed model can be used by replacing the approximate normal within-study model with an exact model. Publication bias is one of the most serious threats in meta-analysis. Several quantitative sensitivity analysis methods for evaluating the potential impacts of selective publication are available for the normal-normal random-effects model. We propose a sensitivity analysis method by extending the likelihood-based sensitivity analysis with the $t$-statistic selection function of Copas to several generalized linear mixed-effects models. Through applications of our proposed method to several real-world meta-analyses and simulation studies, the proposed method was proven to outperform the likelihood-based sensitivity analysis based on the normal-normal model. The proposed method would give useful guidance to address publication bias in the meta-analysis of sparse data.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae092","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Meta-analysis is a powerful tool to synthesize findings from multiple studies. The normal-normal random-effects model is widely used to account for between-study heterogeneity. However, meta-analyses of sparse data, which may arise when the event rate is low for binary or count outcomes, pose a challenge to the normal-normal random-effects model in the accuracy and stability in inference since the normal approximation in the within-study model may not be good. To reduce bias arising from data sparsity, the generalized linear mixed model can be used by replacing the approximate normal within-study model with an exact model. Publication bias is one of the most serious threats in meta-analysis. Several quantitative sensitivity analysis methods for evaluating the potential impacts of selective publication are available for the normal-normal random-effects model. We propose a sensitivity analysis method by extending the likelihood-based sensitivity analysis with the $t$-statistic selection function of Copas to several generalized linear mixed-effects models. Through applications of our proposed method to several real-world meta-analyses and simulation studies, the proposed method was proven to outperform the likelihood-based sensitivity analysis based on the normal-normal model. The proposed method would give useful guidance to address publication bias in the meta-analysis of sparse data.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.