Kaichuan He, Bo Tan, Ao Lu, Lu Bai, Chengqing Song, Yuxin Miao, Biyu Liu, Qian Chen, Xu Teng, Jing Dai, Yuming Wu
{"title":"Asynchronous changes of hydrogen sulfide and its generating enzymes in most tissues with the aging process.","authors":"Kaichuan He, Bo Tan, Ao Lu, Lu Bai, Chengqing Song, Yuxin Miao, Biyu Liu, Qian Chen, Xu Teng, Jing Dai, Yuming Wu","doi":"10.1042/BSR20240320","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is an inevitable and irreversible biological process that gradually heightens the risks of various diseases and death. As a newly discovered endogenous gasotransmitter, hydrogen sulfide (H2S) has been identified to exert multiple beneficial impacts on the regulation of aging and age-related pathologies. This study was aimed at systematically exploring the relationship between asynchronous aging processes and H2S concentrations in various tissues of aging mice. Samples of plasma and 13 tissues were collected from four cross-sectional age groups (3, 6, 12 and 18 months of age) covering the lifespan of male C57BL/6J mice. The H2S concentration was quantified by a reported liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with monobromobimane derivatization. Additionally, the expressions of cystathionine γ-lyase (CSE), cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase, in those tissues were analyzed by Western blotting. We discovered that the H2S concentrations decreased asynchronously with the aging process in plasma, heart, liver, kidney, spleen, subcutaneous fat and brown fat and increased in brain and lung. At least one of the three H2S-generating enzymes expressions was compensatorily up-regulated with the aging process in most tissues, among which the up-regulation of CSE was the most prominent.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240320","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is an inevitable and irreversible biological process that gradually heightens the risks of various diseases and death. As a newly discovered endogenous gasotransmitter, hydrogen sulfide (H2S) has been identified to exert multiple beneficial impacts on the regulation of aging and age-related pathologies. This study was aimed at systematically exploring the relationship between asynchronous aging processes and H2S concentrations in various tissues of aging mice. Samples of plasma and 13 tissues were collected from four cross-sectional age groups (3, 6, 12 and 18 months of age) covering the lifespan of male C57BL/6J mice. The H2S concentration was quantified by a reported liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with monobromobimane derivatization. Additionally, the expressions of cystathionine γ-lyase (CSE), cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase, in those tissues were analyzed by Western blotting. We discovered that the H2S concentrations decreased asynchronously with the aging process in plasma, heart, liver, kidney, spleen, subcutaneous fat and brown fat and increased in brain and lung. At least one of the three H2S-generating enzymes expressions was compensatorily up-regulated with the aging process in most tissues, among which the up-regulation of CSE was the most prominent.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics