Screening the active ingredients of plants via molecular docking technology and evaluating their ability to reduce skin photoaging.

IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY
Biogerontology Pub Date : 2024-11-01 Epub Date: 2024-09-23 DOI:10.1007/s10522-024-10125-7
Shiqian Zheng, Rongrong Deng, Gengjiu Huang, Zhiwen Ou, Zhibin Shen
{"title":"Screening the active ingredients of plants via molecular docking technology and evaluating their ability to reduce skin photoaging.","authors":"Shiqian Zheng, Rongrong Deng, Gengjiu Huang, Zhiwen Ou, Zhibin Shen","doi":"10.1007/s10522-024-10125-7","DOIUrl":null,"url":null,"abstract":"<p><p>The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-024-10125-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.

通过分子对接技术筛选植物活性成分,并评估其减少皮肤光老化的能力。
通过分子对接技术对植物的有效成分进行筛选,并对结果进行验证。根据分子对接验证结果,将五种有效成分等比例组合成复方药物。在 HaCaT 光老化模型中,通过 SOD 和 MDA 试剂盒、DCFH-DA 荧光探针和酶联免疫吸附试验研究了复方药物对 NF-κB 和 MAPK 通路的抗氧化和衰老相关分泌表型(SASP)因子的影响。在皮肤光老化模型中,通过 SOD、MDA 和 CAT 试剂盒和酶联免疫吸附试验研究了复方药物对抗氧化剂以及 NF-κB 和 MAPK 通路的 SASP 因子的影响。结果显示,复方药物提高了 SOD 活性,降低了 MDA 含量和细胞内 ROS,抑制了 NF-κB 通路中的 IL-6,抑制了 MAPK 通路中的 MMP-1 和胶原 I。HE、Masson 和维多利亚蓝皮肤染色结果显示,复方药物抑制了表皮的异常增厚、胶原纤维和弹力纤维的异常断裂和堆积,并保持了它们的有序排列。此外,研究结果表明,复方药物增加了 SOD、CAT 和胶原蛋白 I,降低了 MDA 含量、NF-κB 途径的 SASP 因子 IL-6 和 TNF-α,以及 MAPK 途径的 SASP 因子 MMP-1。上述结果表明,通过分子对接筛选出的化合物药物的有效成分具有减轻皮肤光老化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogerontology
Biogerontology 医学-老年医学
CiteScore
8.00
自引率
4.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments. Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信