The mRNA dynamics underpinning translational control mechanisms of Drosophila melanogaster oogenesis.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Livia V Bayer, Samantha N Milano, Diana P Bratu
{"title":"The mRNA dynamics underpinning translational control mechanisms of Drosophila melanogaster oogenesis.","authors":"Livia V Bayer, Samantha N Milano, Diana P Bratu","doi":"10.1042/BST20231293","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in the study of mRNAs have yielded major new insights into post-transcriptional control of gene expression. Focus on the spatial regulation of mRNAs in highly polarized cells has demonstrated that mRNAs translocate through cells as mRNA:protein granules (mRNPs). These complex self-assemblies containing nuclear and cytoplasmic proteins are fundamental to the coordinated translation throughout cellular development. Initial studies on translational control necessitated fixed tissue, but the last 30 years have sparked innovative live-cell studies in several cell types to deliver a far more nuanced picture of how mRNA-protein dynamics exert translational control. In this review, we weave together the events that underpin mRNA processes and showcase the pivotal studies that revealed how a multitude of protein factors engage with a transcript. We highlight a mRNA's ability to act as a 'super scaffold' to facilitate molecular condensate formation and further moderate translational control. We focus on the Drosophila melanogaster germline due to the extensive post-transcriptional regulation occurring during early oogenesis. The complexity of the spatio-temporal expression of maternal transcripts in egg chambers allows for the exploration of a wide range of mechanisms that are crucial to the life cycle of mRNAs.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2087-2099"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20231293","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in the study of mRNAs have yielded major new insights into post-transcriptional control of gene expression. Focus on the spatial regulation of mRNAs in highly polarized cells has demonstrated that mRNAs translocate through cells as mRNA:protein granules (mRNPs). These complex self-assemblies containing nuclear and cytoplasmic proteins are fundamental to the coordinated translation throughout cellular development. Initial studies on translational control necessitated fixed tissue, but the last 30 years have sparked innovative live-cell studies in several cell types to deliver a far more nuanced picture of how mRNA-protein dynamics exert translational control. In this review, we weave together the events that underpin mRNA processes and showcase the pivotal studies that revealed how a multitude of protein factors engage with a transcript. We highlight a mRNA's ability to act as a 'super scaffold' to facilitate molecular condensate formation and further moderate translational control. We focus on the Drosophila melanogaster germline due to the extensive post-transcriptional regulation occurring during early oogenesis. The complexity of the spatio-temporal expression of maternal transcripts in egg chambers allows for the exploration of a wide range of mechanisms that are crucial to the life cycle of mRNAs.

黑腹果蝇卵子发生过程中翻译控制机制的 mRNA 动力学基础
mRNA 研究的进展为基因表达的转录后控制提供了重要的新见解。对高度极化细胞中 mRNA 空间调控的关注表明,mRNA 在细胞中以 mRNA:蛋白质颗粒(mRNPs)的形式进行转运。这些包含核蛋白和细胞质蛋白的复杂自组装是整个细胞发育过程中协调翻译的基础。最初的翻译控制研究必须使用固定组织,但过去 30 年来,在多种细胞类型中开展了创新性活细胞研究,对 mRNA 蛋白动态如何发挥翻译控制作用有了更细致入微的了解。在这篇综述中,我们将 mRNA 过程的基本事件编织在一起,并展示了揭示多种蛋白因子如何与转录本相互作用的关键研究。我们强调了 mRNA 作为 "超级支架 "的能力,以促进分子凝聚物的形成并进一步缓和翻译控制。我们的研究重点是黑腹果蝇生殖系,因为在早期卵子发生过程中会出现大量转录后调控。卵室中母体转录本的时空表达非常复杂,因此可以探索对 mRNA 生命周期至关重要的各种机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信