Deep-ultraviolet Fourier ptychography (DUV-FP) for label-free biochemical imaging via feature-domain optimization.

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2024-09-01 Epub Date: 2024-09-16 DOI:10.1063/5.0227038
Qianhao Zhao, Ruihai Wang, Shuhe Zhang, Tianbo Wang, Pengming Song, Guoan Zheng
{"title":"Deep-ultraviolet Fourier ptychography (DUV-FP) for label-free biochemical imaging via feature-domain optimization.","authors":"Qianhao Zhao, Ruihai Wang, Shuhe Zhang, Tianbo Wang, Pengming Song, Guoan Zheng","doi":"10.1063/5.0227038","DOIUrl":null,"url":null,"abstract":"<p><p>We present deep-ultraviolet Fourier ptychography (DUV-FP) for high-resolution chemical imaging of biological specimens in their native state without exogenous stains. This approach uses a customized 265-nm DUV LED array for angle-varied illumination, leveraging the unique DUV absorption properties of biomolecules at this wavelength region. We implemented a robust feature-domain optimization framework to overcome common challenges in Fourier ptychographic reconstruction, including vignetting, pupil aberrations, stray light problems, intensity variations, and other systematic errors. By using a 0.12 numerical aperture low-resolution objective lens, our DUV-FP prototype can resolve the 345-nm linewidth on a resolution target, demonstrating at least a four-fold resolution gain compared to the captured raw images. Testing on various biospecimens demonstrates that DUV-FP significantly enhances absorption-based chemical contrast and reveals detailed structural and molecular information. To further address the limitations of conventional FP in quantitative phase imaging, we developed a spatially coded DUV-FP system. This platform enables true quantitative phase imaging of biospecimens with DUV light, overcoming the non-uniform phase response inherent in traditional microscopy techniques. The demonstrated advancements in high-resolution, label-free chemical imaging may accelerate developments in digital pathology, potentially enabling rapid, on-site analysis of biopsy samples in clinical settings.</p>","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"9 9","pages":"090801"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0227038","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present deep-ultraviolet Fourier ptychography (DUV-FP) for high-resolution chemical imaging of biological specimens in their native state without exogenous stains. This approach uses a customized 265-nm DUV LED array for angle-varied illumination, leveraging the unique DUV absorption properties of biomolecules at this wavelength region. We implemented a robust feature-domain optimization framework to overcome common challenges in Fourier ptychographic reconstruction, including vignetting, pupil aberrations, stray light problems, intensity variations, and other systematic errors. By using a 0.12 numerical aperture low-resolution objective lens, our DUV-FP prototype can resolve the 345-nm linewidth on a resolution target, demonstrating at least a four-fold resolution gain compared to the captured raw images. Testing on various biospecimens demonstrates that DUV-FP significantly enhances absorption-based chemical contrast and reveals detailed structural and molecular information. To further address the limitations of conventional FP in quantitative phase imaging, we developed a spatially coded DUV-FP system. This platform enables true quantitative phase imaging of biospecimens with DUV light, overcoming the non-uniform phase response inherent in traditional microscopy techniques. The demonstrated advancements in high-resolution, label-free chemical imaging may accelerate developments in digital pathology, potentially enabling rapid, on-site analysis of biopsy samples in clinical settings.

通过特征域优化实现无标记生化成像的深紫外傅立叶层析成像(DUV-FP)。
我们提出的深紫外傅立叶层析成像技术(DUV-FP)可在无外源性染色剂的情况下对生物标本的原生状态进行高分辨率化学成像。这种方法使用定制的 265-nm DUV LED 阵列进行角度变化照明,充分利用了生物分子在该波长区域独特的 DUV 吸收特性。我们实施了一个强大的特征域优化框架,以克服傅立叶像片重建中常见的挑战,包括渐晕、瞳孔像差、杂散光问题、强度变化和其他系统误差。通过使用数值孔径为 0.12 的低分辨率物镜,我们的 DUV-FP 原型可以分辨分辨率目标上的 345-nm 线宽,与捕获的原始图像相比,分辨率至少提高了四倍。对各种生物样本的测试表明,DUV-FP 能显著增强基于吸收的化学对比度,并揭示详细的结构和分子信息。为了进一步解决传统 FP 在定量相位成像方面的局限性,我们开发了空间编码 DUV-FP 系统。该平台利用 DUV 光对生物样本进行真正的定量相位成像,克服了传统显微镜技术固有的不均匀相位响应问题。在高分辨率、无标记化学成像方面取得的进展可能会加速数字病理学的发展,从而有可能在临床环境中实现对活检样本的快速现场分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信