A radioactive and fluorescent dual modality cysteine cathepsin-B activity-based probe for the detection and treatment evaluation in rheumatoid arthritis.
IF 2 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"A radioactive and fluorescent dual modality cysteine cathepsin-B activity-based probe for the detection and treatment evaluation in rheumatoid arthritis.","authors":"Honghui Guo, Yanjing Chen, Lianbo Zhou, Xin Xiang, Feng He, Xingdou Chen, Wenjie Fu, Yu Long, Yunhua Wang, Xiaowei Ma","doi":"10.62347/IAED6442","DOIUrl":null,"url":null,"abstract":"<p><p>Activated macrophages are key effector cells and specific markers in patients with rheumatoid arthritis (RA). Cysteine cathepsin B (CTS-B) is highly expressed in macrophages and positively associated with RA activity and severity. This study aims to evaluate an activity-based multi-modality diagnostic agent, <sup>68</sup>Ga-BMX2, which targets CTS-B to visualize the arthritis activity and evaluate the treatment efficacy. A CTS-B activity-based probe, BMX2, was labeled efficiently with <sup>68</sup>Ga to produce <sup>68</sup>Ga-BMX2 for fluorescent and positron emission tomography (PET) multi-modality imaging. The affinity and specificity of BMX2 binding with the CTS-B enzyme in macrophages were determined by radioactive experiment using RAW 264.7 cell lines, with CA074 and BMX5 as the inhibitors to test the specificity of the binding. Then, PET and fluorescence imaging were acquired on collagen-induced arthritis (CIA) mice. Additionally, the treatment monitoring capability of <sup>68</sup>Ga-BMX2 PET/CT imaging was tested with methotrexate (MTX). RAW 264.7 macrophage cells showed significant uptake of <sup>68</sup>Ga-BMX2. The binding of BMX2 with CTS-B in RAW 264.7 macrophage cells is time-dependent and could be blocked by CA074 and BMX5. <i>In vivo</i> optical and PET imaging showed high signals in the right hind arthritis in CIA mice from <sup>68</sup>Ga-BMX2 and BMX2 accumulated for at least 120 h. Additionally, <sup>68</sup>Ga-BMX2 signals were significantly reduced in the MTX-treated CIA mice compared to the control group. The <sup>68</sup>Ga-BMX2, a radioactive and fluorescent dual-modality diagnostic agent targeting CTS-B, demonstrated a practical approach for CIA PET and fluorescence imaging. The <sup>68</sup>Ga-BMX2 multimodality imaging could significantly monitor the treatment response in the CIA mice.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 4","pages":"261-271"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of nuclear medicine and molecular imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/IAED6442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Activated macrophages are key effector cells and specific markers in patients with rheumatoid arthritis (RA). Cysteine cathepsin B (CTS-B) is highly expressed in macrophages and positively associated with RA activity and severity. This study aims to evaluate an activity-based multi-modality diagnostic agent, 68Ga-BMX2, which targets CTS-B to visualize the arthritis activity and evaluate the treatment efficacy. A CTS-B activity-based probe, BMX2, was labeled efficiently with 68Ga to produce 68Ga-BMX2 for fluorescent and positron emission tomography (PET) multi-modality imaging. The affinity and specificity of BMX2 binding with the CTS-B enzyme in macrophages were determined by radioactive experiment using RAW 264.7 cell lines, with CA074 and BMX5 as the inhibitors to test the specificity of the binding. Then, PET and fluorescence imaging were acquired on collagen-induced arthritis (CIA) mice. Additionally, the treatment monitoring capability of 68Ga-BMX2 PET/CT imaging was tested with methotrexate (MTX). RAW 264.7 macrophage cells showed significant uptake of 68Ga-BMX2. The binding of BMX2 with CTS-B in RAW 264.7 macrophage cells is time-dependent and could be blocked by CA074 and BMX5. In vivo optical and PET imaging showed high signals in the right hind arthritis in CIA mice from 68Ga-BMX2 and BMX2 accumulated for at least 120 h. Additionally, 68Ga-BMX2 signals were significantly reduced in the MTX-treated CIA mice compared to the control group. The 68Ga-BMX2, a radioactive and fluorescent dual-modality diagnostic agent targeting CTS-B, demonstrated a practical approach for CIA PET and fluorescence imaging. The 68Ga-BMX2 multimodality imaging could significantly monitor the treatment response in the CIA mice.
期刊介绍:
The scope of AJNMMI encompasses all areas of molecular imaging, including but not limited to: positron emission tomography (PET), single-photon emission computed tomography (SPECT), molecular magnetic resonance imaging, magnetic resonance spectroscopy, optical bioluminescence, optical fluorescence, targeted ultrasound, photoacoustic imaging, etc. AJNMMI welcomes original and review articles on both clinical investigation and preclinical research. Occasionally, special topic issues, short communications, editorials, and invited perspectives will also be published. Manuscripts, including figures and tables, must be original and not under consideration by another journal.