{"title":"Influence of RNA Methylation on Cancerous Cells: A Prospective Approach for Alteration of In Vivo Cellular Composition.","authors":"Manali Rupareliya, Pravin Shende","doi":"10.1007/5584_2024_820","DOIUrl":null,"url":null,"abstract":"<p><p>RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2024_820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.
期刊介绍:
Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.