Integration Analysis of miRNA Circulating Expression Following Cerebellar Transcranial Direct Current Stimulation in Patients with Ischemic Stroke.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaomin Pang, Fang Xiao, Tianqing Zheng, Liren Zhao, Xiaorong Ge, Shaojun Xie, Zhao Zhang, Ning Xu, Zongyong Wei, Zhanhong Xiao
{"title":"Integration Analysis of miRNA Circulating Expression Following Cerebellar Transcranial Direct Current Stimulation in Patients with Ischemic Stroke.","authors":"Xiaomin Pang, Fang Xiao, Tianqing Zheng, Liren Zhao, Xiaorong Ge, Shaojun Xie, Zhao Zhang, Ning Xu, Zongyong Wei, Zhanhong Xiao","doi":"10.1007/s10528-024-10912-4","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to explore the molecular mechanisms underlying cerebellar transcranial direct current stimulation (ctDCS) as a rehabilitation intervention for patients with ischemic stroke, focusing on the role of microRNAs (miRNAs). Whole-transcriptome sequencing was employed to obtain circulating expression profiles of miRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and mRNAs in patients with ischemic stroke before and after 3-week ctDCS. miRanda software was used to predict the target genes of miRNAs, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to identify biological functions and signaling pathways. Subsequently, competing endogenous RNA (ceRNA) regulatory networks comprising circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA interactions were constructed. Key miRNAs in blood samples were validated through quantitative RT-PCR. In total, 43 miRNAs, 807 lncRNAs, 1,111 circRNAs, and 201 mRNAs were differentially expressed after ctDCS compared with before ctDCS. Bioinformatics analyses revealed significant enrichment of target genes regulated by differentially expressed miRNAs across multiple biological pathways. CeRNA regulatory networks implied that several miRNAs were closely related to the ctDCS. Among them, hsa-miR-181a-5p, hsa-miR-224-5p, and hsa-miR-340-3p showed significantly downregulated expression levels as confirmed by qRT-PCR. This study conducted the first-ever assessment of miRNA expression patterns in patients with ischemic stroke undergoing ctDCS. The findings revealed that ctDCS induces alterations in miRNA levels, suggesting their potential utility as therapeutic markers.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10912-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to explore the molecular mechanisms underlying cerebellar transcranial direct current stimulation (ctDCS) as a rehabilitation intervention for patients with ischemic stroke, focusing on the role of microRNAs (miRNAs). Whole-transcriptome sequencing was employed to obtain circulating expression profiles of miRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and mRNAs in patients with ischemic stroke before and after 3-week ctDCS. miRanda software was used to predict the target genes of miRNAs, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to identify biological functions and signaling pathways. Subsequently, competing endogenous RNA (ceRNA) regulatory networks comprising circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA interactions were constructed. Key miRNAs in blood samples were validated through quantitative RT-PCR. In total, 43 miRNAs, 807 lncRNAs, 1,111 circRNAs, and 201 mRNAs were differentially expressed after ctDCS compared with before ctDCS. Bioinformatics analyses revealed significant enrichment of target genes regulated by differentially expressed miRNAs across multiple biological pathways. CeRNA regulatory networks implied that several miRNAs were closely related to the ctDCS. Among them, hsa-miR-181a-5p, hsa-miR-224-5p, and hsa-miR-340-3p showed significantly downregulated expression levels as confirmed by qRT-PCR. This study conducted the first-ever assessment of miRNA expression patterns in patients with ischemic stroke undergoing ctDCS. The findings revealed that ctDCS induces alterations in miRNA levels, suggesting their potential utility as therapeutic markers.

缺血性脑卒中患者小脑经颅直流电刺激后 miRNA 循环表达的整合分析
本研究旨在探索小脑经颅直流电刺激(ctDCS)作为缺血性脑卒中患者康复干预措施的分子机制,重点研究微RNA(miRNA)的作用。研究人员采用全转录组测序技术获得了缺血性脑卒中患者在接受为期三周的ctDCS治疗前后的miRNA、长非编码RNA(lncRNA)、环状RNA(circRNA)和mRNA的循环表达谱,并利用miRanda软件预测了miRNA的靶基因,同时进行了基因本体(GO)和京都基因组百科全书(KEGG)分析以确定生物功能和信号通路。随后,构建了由 circRNA-miRNA-mRNA 和 lncRNA-miRNA-mRNA 相互作用组成的竞争性内源性 RNA(ceRNA)调控网络。通过定量 RT-PCR 验证了血液样本中的关键 miRNA。与ctDCS前相比,ctDCS后共有43个miRNA、807个lncRNA、1,111个circRNA和201个mRNA表达不同。生物信息学分析表明,受不同表达的 miRNA 调控的靶基因在多个生物通路上显著富集。CeRNA调控网络表明,一些miRNA与ctDCS密切相关。qRT-PCR证实,其中hsa-miR-181a-5p、hsa-miR-224-5p和hsa-miR-340-3p的表达水平显著下调。这项研究首次评估了接受ctDCS治疗的缺血性中风患者的miRNA表达模式。研究结果表明,ctDCS可诱导miRNA水平的改变,这表明miRNA可作为治疗标记物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信