Paper-based multicolor sensor for on-site quantitative detection of organophosphate pesticides based on acetylcholinesterase-mediated paper-based Au3+-etching of gold nanobipyramids and CIELab color space.

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Feng Zhang, Yu Gao, Enxi Ren, Ling Fang, Weijuan Yang, Liaoyuan Zhang, Zongwen Wang
{"title":"Paper-based multicolor sensor for on-site quantitative detection of organophosphate pesticides based on acetylcholinesterase-mediated paper-based Au<sup>3+</sup>-etching of gold nanobipyramids and CIELab color space.","authors":"Feng Zhang, Yu Gao, Enxi Ren, Ling Fang, Weijuan Yang, Liaoyuan Zhang, Zongwen Wang","doi":"10.1016/j.talanta.2024.126925","DOIUrl":null,"url":null,"abstract":"<p><p>On-site quantitative detection of organophosphorus pesticides (OPs) is crucial for safeguarding food and public safety. This study presents a novel acetylcholinesterase (AChE)-mediated paper-based Au<sup>3+</sup>-etching of gold nanobipyramids (AuNBPs) system. The system employs a long-term storable AuNBPs-deposited nylon membrane embedded within a portable and temperature-controlled paper-based analytical device. This system, coupled with a colorimeter-based quantitative method, enables the development of a practical paper-based multicolor sensor (PMS) for on-site quantitative detection of three common OPs (paraoxon, dichlorvos, and trichlorfon). In the absence of OPs, AChE hydrolyzes acetylthiocholine to thiocholine, which reduces Au<sup>3+</sup> to Au<sup>+</sup>. The presence of OPs inhibits AChE activity, thereby preserving Au<sup>3+</sup> to etch AuNBPs on nylon membranes, accompanied by multicolor changes. These color changes can be simply quantified by measuring the a∗ parameter of the CIELab color space using a portable colorimeter. Under optimal conditions, the PMS displayed eight OPs-corresponding color changes with a minimum detectable concentration of 1.0-10 μg/L (visual observation) and limits of detection of 0.8-7.2 μg/L (colorimeter) and 0.2-3.4 μg/L (UV-vis spectrometry). The PMS successfully determined the OPs in vegetable and rice samples with recoveries of 89.0-109 % and RSDs (n = 5) of <6 %. These results were consistent with those obtained using the HPLC-MS method. The PMS demonstrates excellent portability, AuNBPs stability, detection sensitivity, and reproducibility, making it a promising tool for the on-site quantitative detection of OPs residues in food. Furthermore, the paper-based etching system coupled with the colorimeter-based quantitative method provides a valuable reference to develop practical PMSs for various targets in diverse fields.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126925","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

On-site quantitative detection of organophosphorus pesticides (OPs) is crucial for safeguarding food and public safety. This study presents a novel acetylcholinesterase (AChE)-mediated paper-based Au3+-etching of gold nanobipyramids (AuNBPs) system. The system employs a long-term storable AuNBPs-deposited nylon membrane embedded within a portable and temperature-controlled paper-based analytical device. This system, coupled with a colorimeter-based quantitative method, enables the development of a practical paper-based multicolor sensor (PMS) for on-site quantitative detection of three common OPs (paraoxon, dichlorvos, and trichlorfon). In the absence of OPs, AChE hydrolyzes acetylthiocholine to thiocholine, which reduces Au3+ to Au+. The presence of OPs inhibits AChE activity, thereby preserving Au3+ to etch AuNBPs on nylon membranes, accompanied by multicolor changes. These color changes can be simply quantified by measuring the a∗ parameter of the CIELab color space using a portable colorimeter. Under optimal conditions, the PMS displayed eight OPs-corresponding color changes with a minimum detectable concentration of 1.0-10 μg/L (visual observation) and limits of detection of 0.8-7.2 μg/L (colorimeter) and 0.2-3.4 μg/L (UV-vis spectrometry). The PMS successfully determined the OPs in vegetable and rice samples with recoveries of 89.0-109 % and RSDs (n = 5) of <6 %. These results were consistent with those obtained using the HPLC-MS method. The PMS demonstrates excellent portability, AuNBPs stability, detection sensitivity, and reproducibility, making it a promising tool for the on-site quantitative detection of OPs residues in food. Furthermore, the paper-based etching system coupled with the colorimeter-based quantitative method provides a valuable reference to develop practical PMSs for various targets in diverse fields.

基于乙酰胆碱酯酶介导的纸基 Au3+-蚀刻金纳米双锥体和 CIELab 色彩空间的有机磷农药现场定量检测纸基多色传感器。
现场定量检测有机磷农药(OPs)对保障食品和公共安全至关重要。本研究提出了一种新型乙酰胆碱酯酶(AChE)介导的纸基 Au3+ 蚀刻金纳米双金字塔(AuNBPs)系统。该系统采用了一种可长期保存的 AuNBPs 沉积尼龙膜,嵌入到一个便携式温控纸基分析装置中。该系统与基于色度计的定量方法相结合,开发出一种实用的纸质多色传感器(PMS),用于现场定量检测三种常见的 OPs(对硫磷、敌敌畏和敌百虫)。在没有 OPs 的情况下,AChE 会将乙酰硫代胆碱水解为硫代胆碱,从而将 Au3+ 还原为 Au+。OPs 的存在抑制了 AChE 的活性,从而保留了 Au3+,使其能够蚀刻尼龙膜上的 AuNBPs,并伴随着多种颜色的变化。这些颜色变化可通过使用便携式色度计测量 CIELab 色彩空间的 a∗ 参数进行简单量化。在最佳条件下,PMS 显示了八种 OPs 对应的颜色变化,最低检测浓度为 1.0-10 μg/L(目测),检测限为 0.8-7.2 μg/L(色度计)和 0.2-3.4 μg/L(紫外-可见光谱法)。PMS 成功地测定了蔬菜和大米样品中的 OPs,回收率为 89.0-109%,RSD(n = 5)为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信