Paper-based multicolor sensor for on-site quantitative detection of organophosphate pesticides based on acetylcholinesterase-mediated paper-based Au3+-etching of gold nanobipyramids and CIELab color space.
{"title":"Paper-based multicolor sensor for on-site quantitative detection of organophosphate pesticides based on acetylcholinesterase-mediated paper-based Au<sup>3+</sup>-etching of gold nanobipyramids and CIELab color space.","authors":"Feng Zhang, Yu Gao, Enxi Ren, Ling Fang, Weijuan Yang, Liaoyuan Zhang, Zongwen Wang","doi":"10.1016/j.talanta.2024.126925","DOIUrl":null,"url":null,"abstract":"<p><p>On-site quantitative detection of organophosphorus pesticides (OPs) is crucial for safeguarding food and public safety. This study presents a novel acetylcholinesterase (AChE)-mediated paper-based Au<sup>3+</sup>-etching of gold nanobipyramids (AuNBPs) system. The system employs a long-term storable AuNBPs-deposited nylon membrane embedded within a portable and temperature-controlled paper-based analytical device. This system, coupled with a colorimeter-based quantitative method, enables the development of a practical paper-based multicolor sensor (PMS) for on-site quantitative detection of three common OPs (paraoxon, dichlorvos, and trichlorfon). In the absence of OPs, AChE hydrolyzes acetylthiocholine to thiocholine, which reduces Au<sup>3+</sup> to Au<sup>+</sup>. The presence of OPs inhibits AChE activity, thereby preserving Au<sup>3+</sup> to etch AuNBPs on nylon membranes, accompanied by multicolor changes. These color changes can be simply quantified by measuring the a∗ parameter of the CIELab color space using a portable colorimeter. Under optimal conditions, the PMS displayed eight OPs-corresponding color changes with a minimum detectable concentration of 1.0-10 μg/L (visual observation) and limits of detection of 0.8-7.2 μg/L (colorimeter) and 0.2-3.4 μg/L (UV-vis spectrometry). The PMS successfully determined the OPs in vegetable and rice samples with recoveries of 89.0-109 % and RSDs (n = 5) of <6 %. These results were consistent with those obtained using the HPLC-MS method. The PMS demonstrates excellent portability, AuNBPs stability, detection sensitivity, and reproducibility, making it a promising tool for the on-site quantitative detection of OPs residues in food. Furthermore, the paper-based etching system coupled with the colorimeter-based quantitative method provides a valuable reference to develop practical PMSs for various targets in diverse fields.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126925","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
On-site quantitative detection of organophosphorus pesticides (OPs) is crucial for safeguarding food and public safety. This study presents a novel acetylcholinesterase (AChE)-mediated paper-based Au3+-etching of gold nanobipyramids (AuNBPs) system. The system employs a long-term storable AuNBPs-deposited nylon membrane embedded within a portable and temperature-controlled paper-based analytical device. This system, coupled with a colorimeter-based quantitative method, enables the development of a practical paper-based multicolor sensor (PMS) for on-site quantitative detection of three common OPs (paraoxon, dichlorvos, and trichlorfon). In the absence of OPs, AChE hydrolyzes acetylthiocholine to thiocholine, which reduces Au3+ to Au+. The presence of OPs inhibits AChE activity, thereby preserving Au3+ to etch AuNBPs on nylon membranes, accompanied by multicolor changes. These color changes can be simply quantified by measuring the a∗ parameter of the CIELab color space using a portable colorimeter. Under optimal conditions, the PMS displayed eight OPs-corresponding color changes with a minimum detectable concentration of 1.0-10 μg/L (visual observation) and limits of detection of 0.8-7.2 μg/L (colorimeter) and 0.2-3.4 μg/L (UV-vis spectrometry). The PMS successfully determined the OPs in vegetable and rice samples with recoveries of 89.0-109 % and RSDs (n = 5) of <6 %. These results were consistent with those obtained using the HPLC-MS method. The PMS demonstrates excellent portability, AuNBPs stability, detection sensitivity, and reproducibility, making it a promising tool for the on-site quantitative detection of OPs residues in food. Furthermore, the paper-based etching system coupled with the colorimeter-based quantitative method provides a valuable reference to develop practical PMSs for various targets in diverse fields.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.